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Large-Dimensional Characterization of Robust
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Abstract—In standard discriminant analysis, data are com-
monly assumed to follow a Gaussian distribution, a condition
which is often violated in practice. In this work, to account for
potential spurious or mislabeled observations in the training
data, we consider a robust version of regularized linear
discriminant analysis (LDA) classifiers. Essential to such robust
version of LDA is the design of a robust discriminant rule
which relies on a robust estimate of the covariance matrix of
the training data. We propose to use a regularized version of M-
estimators of covariance matrices belonging to Maronna’s class
of estimators. In the regime where both the number of variables
and the number of training samples are large, building upon
recent results from random matrix theory, we show that
when the training data are free from outliers, each classifier
within the class of proposed robust classifiers is asymptoti-
cally equivalent to traditional, non-robust classifiers. Rather
surprisingly, this entails that the use of robust estimators does
not degrade the performance of LDA, up to a transformation
of the regularization parameter that we precisely characterize.
We also demonstrate that the proposed robust classifiers lead
to a better classification accuracy when the data are corrupted
by outliers or random noise. Furthermore, through simulations
on the popular MNIST data set and considering different
classification tasks, we show that the worse the classification
error of traditional methods is, the further gain is to be
expected with the use of our proposed method.

Index Terms: Robust estimation, covariance matrices, linear
discriminant analysis.

I. INTRODUCTION

Discriminant analysis is a common parametric classifica-
tion method used in statistics, machine learning, and pattern
recognition [2, 3]. The objective is to determine the class
to which a new data observation belongs. To that end, a
discrimination rule is learned from labeled (training) data,
based on estimates of the class means and covariances.

When dealing with real data sets, it is often the case
that the number of variables is of the same order as (or
even larger than) the number of available samples. In such
cases, standard discriminant analysis, based on the classical
sample covariance matrix (SCM) estimator, typically fails.
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To solve this issue, regularized versions of discriminant anal-
ysis have been proposed [4], based on regularized versions
of the SCM. Regularized discriminant analysis has since
established itself as a go-to choice in practice. In recent
works [5, 6], regularized linear discriminant analysis (LDA)
has been studied from a random matrix theory perspective.
Specifically, when the numbers of variables and samples
grow large at the same rate, an asymptotic equivalent of
the classification error has been found, shedding some light
on the influence of the data model on the performance of
regularized LDA. This result has been leveraged to estimate
the optimal regularization parameter that minimizes the
testing error [6]. As this estimation procedure has negligible
computational cost, it represents a major improvement over
traditional, computationally-costly (and sometimes unstable)
procedures like cross-validation or bootstrap [7]. Recently,
the performance of LDA has also been studied in the context
of dimensionality reduction using random projections [8],
and under a spiked covariance model [9].

A common problem arising in discriminant analysis is
that the data, although assumed to arise from a Gaussian
mixture model, is often not Gaussian. The data distribution
may instead be heavy-tailed, or contain outliers1 (see e.g.,
[10]). This is important in practice, since the discriminant
rule learned from training data requires the estimation of
the data covariance matrix, and if outliers are present and/or
the data are heavy-tailed, a standard estimate like the SCM
may not perform well. It is then natural to employ a
robust estimator of the covariance matrix. Here, we consider
regularized Maronna’s M-estimators of covariance, a class
of robust hybrid estimators proposed in [11] combining
the original Maronna’s M-estimators [12] and the popular
regularized SCM (RSCM) [13]. In [14], regularized M-
estimators were also applied to the discriminant analysis
problem, however: i) the regularized estimators of [14] con-
sider different (general) loss functions which are not specific
to the LDA context, i.e., the objective is to minimize certain
loss functions such as Euclidean covariance distance, rather
than optimizing the LDA performance (classification error);
and ii) a systematic performance analysis in terms of the

1Outliers are data points that statistically differ (significantly) from other
observations. In the context of LDA classifiers under a Gaussian mixture
model, for example, an outlier could be a data point drawn from a different
distribution, e.g., Gaussian with different mean and/or covariance than the
ones considered in the model, or a non-Gaussian distribution. The origin
of outliers can be diverse [10], e.g., due to variability in the measurement,
experimental errors, mislabeling of data observations, etc.
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classification error is not provided in [14]—consequently,
their LDA solutions require a costly cross-validation proce-
dure in order to find the optimal regularization parameter.

By leveraging tools from random matrix theory, we study
the asymptotic performance of LDA when employing these
robust covariance estimators (regularized Maronna’s M-
estimators) in lieu of the RSCM. To do so, we build on
a series of recent works concerned with the performance
analysis of regularized LDA [5, 6] and the asymptotic
behavior of Maronna’s M estimators [15], which consider
the regime where the number of variables and the number
of samples grow large at the same rate. As a key technical
finding, we demonstrate that when no outliers are present in
the data, there is no performance loss when using regularized
Maronna’s M-estimators rather than the RSCM. This departs
from the fact that, in classical statistical settings (small num-
ber of variables, large number of samples) robust estimation
methods are sometimes accompanied with a loss in accuracy
in uncontaminated data, as compared with classical non-
robust methods [10]. The tradeoff between robustness and
efficiency is indeed a well known issue in robust statistics
[10, 16, 17]—while offering some form of protection against
outliers, robust estimators should ideally differ as little
as possible from standard, non-robust alternatives under
uncontaminated data [16]. This is also known as “premium”,
i.e., the cost of using the robust estimator when the data
is clean2. Our analysis shows that the considered robust
estimators have a low premium in high-dimensional settings,
and that the associated cost of using robust LDA classifiers
vanishes asymptotically as both the number of variables and
the number of samples grow large.

As a key theoretical result to characterizing the large-
dimensional behaviour of the robust LDA classifiers, we
show that Maronna’s M-estimators tend to behave anal-
ogously to the RSCM. This is consistent with previous
results [15, 18], derived for settings different to LDA. For
LDA, a notable technical challenge is that we have to
consider a mixture model, with data samples that typically
exhibit different, non-zero means. Our results necessitate
a centering of the data prior to estimation, which compli-
cates the analysis. Similar technical difficulties were also
encountered in [19], in the context of portfolio optimization.
The family of Maronna’s M-estimators that we consider is
quite broad, encompassing in particular Tyler-type [20] and
Huber-type estimators [21]. A large-dimensional analysis of
these estimators was presented in [22] and [15]; however, the
analysis was not done in the context of LDA and considered
different data models.

Our theoretical results are validated through simulations,
on synthetic data and on the MNIST dataset. We show that
when the data are corrupted by outliers represented by salt-
and-pepper noise, there is a clear benefit in using Maronna’s
M-estimators, relative to RSCM. That is, when departing

2For example, a robust estimate of location like the median incurs a
high premium: under uncontaminated data, it requires a higher number of
samples to reach the same performance as the (non-robust) mean [17].

from clean-data models, the proposed robust classification
methods provide protection against outliers and lead to
enhanced performance compared to traditional non-robust
methods. Generally, our results argue in favor of the use of
robust covariance estimators for LDA-based classification.

Notation: The superscript T means transpose, Tr[A] rep-
resents the trace of the Hermitian matrix A and λ1(A) ≤
· · · ≤ λN (A) represent its ordered eigenvalues, ||.|| denotes
the Euclidean norm for vectors and the spectral norm for
matrices. The notation A = diag(a1, · · · , an) indicates
that the matrix A is an n×n diagonal matrix with diagonal
entries a1, · · · , an. We use 1n to denote the n × 1 vector
of all ones, and IN the N × N identity matrix. Φ(·)
denotes the cumulative distribution function of the standard
normal distribution. The arrow a.s.−−→ designates the almost
sure convergence of a random variable, while δx denotes
the Dirac measure at point x. If h is a Gaussian random
vector with mean µ and covariance matrix C, we write
h ∼ N (µ,C). For a functional f , we say that f = O(1) if
there exists M > 0 such that |f | ≤M .

II. LINEAR DISCRIMINANT ANALYSIS

A. Model

In discriminant analysis, a discriminant rule is applied
to decide the class that a given (unseen) data observation
belongs to. Such rule is built based on a training data set
composed of n samples, known (labeled) to belong to one of
the classes. Consider 2 classes C0, C1, and assume that the
ni > 0 observations from class Ci are independent samples
from a multivariate Gaussian distribution with mean µi ∈
RN×1 and covariance matrix CN ∈ RN×N , with CN � 0.
Thus, a training sample y(i) from class Ci (i = 0, 1) is such
that

y(i) = µi + C
1/2
N z, z ∼ N (0, IN ). (1)

The linear discriminant rule assigns a new (test) measure-
ment y to class Ck if

k = argmin
i∈{0,1}

{
(y − µi)

TC−1N (y − µi)− logπi
}
, (2)

with πi the a priori probability of class Ci. Throughout the
paper the prior probabilities π0, π1 will be assumed known.
It can be seen that the LDA rule assigns the label 0 to
observation y if P(y|y ∈ C0) > P(y|y ∈ C1), and the
label 1 otherwise.

Since the true means µi and the population matrix CN

appearing in the LDA rule are unknown, in practice they
need to be estimated based on the training data {y(i)

j ∈
Ci, i = 0, 1, j = 1, · · · , ni}. Common estimates for
µi, CN are the sample estimates

µ̂i =
1

ni

ni∑
j=1

y
(i)
j , i ∈ {0, 1}

R̂ =
1

n− 2

(
(n0 − 1)R̂0 + (n1 − 1)R̂1

)
,
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where n = n0 + n1 and where

R̂i =
1

ni − 1

ni∑
j=1

ỹ
(i)
j (ỹ

(i)
j )T, i ∈ {0, 1}. (3)

Here ỹ
(i)
j designates the re-centered version of sample

y
(i)
j ∈ Ci, i = 0, 1, j ∈ {1, · · · , ni} obtained after

subtracting the sample mean µ̂i from y
(i)
j , i.e.,

ỹ
(i)
j , y

(i)
j − µ̂i.

The estimator R̂ is usually referred to as the “pooled
SCM”. A main issue with the pooled SCM estimator is that
it performs poorly when the number of variables is of the
same order as the number of samples (or possibly larger).
In practice, to alleviate this issue (and avoid possible ill-
conditioning of the SCM), the regularized estimator [5, 23]

R̂(κ, β) = κ
(
IN + βR̂

)
(4)

is typically used, where κ, β ≥ 0 are regularization param-
eters. Hereafter, this estimator will be referred to as the
RSCM. When the RSCM and the sample means are used as
“plug-in” estimators in (2), the corresponding LDA classifier
will be referred to as RLDA.

Next, we recall some known results concerning the per-
formance of LDA for a general estimator of CN [5], and
the asymptotic performance of LDA when the estimator of
CN is chosen to be R̂(κ, β) [5, 6]. These results will be
important when studying the asymptotic performance of our
LDA solutions, introduced in Section III.

B. Classification error of linear discriminant analysis

Let Ĥ be an estimator of C−1N . Then, conditioned on the
training data x1, · · · ,xn, the probability of misclassification
is given by [5]

εLDA(Ĥ) = π0ε
LDA
0 (Ĥ) + π1ε

LDA
1 (Ĥ) (5)

with εLDA
i (Ĥ), i ∈ {0, 1}, the class-conditional classifica-

tion error verifying

εLDA
i (Ĥ)=Φ

(−1)i+1Gi(µi, µ̂0, µ̂1, Ĥ) + (−1)ilogπ1

π0√
D(CN , µ̂0, µ̂1, Ĥ)

,
(6)

where

Gi(µi, µ̂0, µ̂1, Ĥ)=

(
µi −

µ̂0 + µ̂1

2

)T

Ĥ(µ̂0 − µ̂1)

(7)

D(CN , µ̂0, µ̂1, Ĥ)=(µ̂0 − µ̂1)TĤCNĤ(µ̂0 − µ̂1). (8)

For RLDA, Ĥ is chosen to be R̂(κ, β)−1, which yields
the class-conditional classification error

εRLDA
i (κ, β) =

Φ

(−1)i+1Gi(µi, µ̂0, µ̂1, R̂(β)−1) + (−1)iκ logπ1

π0√
D(CN , µ̂0, µ̂1, R̂(β)−1)

,
(9)

where R̂(β) , R̂(κ,β)
κ = IN + βR̂. Note that the first

regularization parameter of the RSCM κ is inconsequential
when the class priors are equal, i.e., when π0 = π1.
The corresponding asymptotic classification error has been
studied in [5, 6], under a double-asymptotic regime defined
as follows:

Assumption 1. cN , N/n → c ∈ (0,∞) as N,n → ∞,
and ni/n→ πi ∈ (0, 1), i = 0, 1, as n, ni →∞.

This specifies the growth regime under consideration, allow-
ing random matrix theory results to be exploited.

Moreover, the following assumption is also required:

Assumption 2. ||CN || = O(1), and ||µ|| = O(1), where
µ , µ0 − µ1.

This assumption controls the scaling of the covariance and
mean of the training data, and ensures that a non-trivial (i.e.,
neither 0 nor 1) classification error probability is attainable
as the dimension of the data N grows large [6, 24].

Under Assumptions 1 and 2, [5, 6] showed that the class-
conditional classification error of RLDA in (9) converges
to a deterministic quantity εRLDA

i (κ, β) as n,N →∞, with
εRLDA
i (κ, β) depending only on the true means of each class

and the underlying covariance matrix. The result is recalled
as follows:

Proposition 1. [5, Theorem 1] Let Assumptions 1 and 2
hold. As N,n → ∞, |εRLDA

i (κ, β) − εRLDA
i (κ, β)| a.s.−−→ 0

for each κ, β > 0, with

εRLDA
i (κ, β) = Φ

 (−1)i+1Gi (β) + (−1)iκ log
(
π0

π1

)
√
D (β)

 .

Here, Gi (β) and D (β) are defined as

Gi (β)=
(−1)i

2
µT

(
IN +

β

1 + βδ
CN

)−1
µ−nδ

2

(
1

n0
− 1

n1

)

D (β)=
µTCNAµ +

(
1
n0

+ 1
n1

)
Tr[C2

NA]

1− β2

n(1+βδ)2 Tr[C2
NA]

,

where A =
(
IN + β

1+βδCN

)−2
, and δ is the unique

solution to

δ =
1

N
Tr

[
CN

(
IN +

β

1 + βδ
CN

)−1]
.

This result links the misclassification probability asso-
ciated with the RSCM with a deterministic quantity that
does not depend on the (random) training data. As will be
seen, this can be used to identify the optimal regularization
parameter β with minimal classification error.
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C. Sensitivity of RLDA to the presence of outliers

An issue with RLDA is that it is not robust if outlying
samples are present in the training data. We show this
with an example. Consider a covariance matrix with entries
[CN ]ij = 0.8|i−j|, and with eigenvalue decomposition
CN = V∆VT. Assume that µ ∝ V1N , and that outliers
distributed as N (5µ, IN ) are introduced in the training
sample. In Fig. 1, we plot the probability of classification
error for the RLDA classifier (i.e., based on the RSCM),
as the proportion of outliers increases. Here, we assume
equal priors (as such, the choice of κ is irrelevant), and β
is chosen empirically to minimize the classification error on
the testing data set. The performance of the oracle classifier
(CN assumed known) and the performance of a robust
classifier (based on Tyler’s estimator, to be introduced next),
are also presented.

Fig. 1: Classification error probability for the RLDA and
oracle classifiers. N = 100, n0 = n1 = 200 (cN = 1/4),
averaged over 1,000 realizations. Outliers ∼ N (5µ, IN ).

It is evident that the performance of RLDA is seriously
affected by the outliers, even when the outlier proportion is
reasonably small. This is in contrast to the robust classifier,
which can mitigate the effect of the outliers. In the next
section, we will introduce a class of robust covariance
estimators which can be used in the context of LDA.

III. ROBUST LDA USING MARONNA’S M-ESTIMATORS

We propose a robust version of RLDA by utilizing robust
estimators of covariance matrices known as Maronna’s M-
estimators [12]. A regularized version of these estimators,
adapted to data-scarce applications, has been proposed in
[11]. The general behavior of these regularized, robust esti-
mators has been studied in [15] under double asymptotics.
However it is not known how these estimators perform in
the context of LDA. By leveraging and extending some of
the results obtained in [15], we will show that the use of
these estimators lead to a robust version of RLDA which
is guaranteed to perform as well as the traditional (RSCM-
based) RLDA when data are not corrupted by outliers.

In the context of the two-mixture model introduced above,
robust regularized M-estimators of covariance matrices are
then defined as the unique solution to the equation [15]

ĈN(ρ)=
(1− ρ)

n− 2

1∑
i=0

ni∑
j=1

u
(
(ỹ

(i)
j )TĈN (ρ)−1ỹ

(i)
j

)
ỹ
(i)
j (ỹ

(i)
j )T

+ ρIN , (10)

where ρ ∈ (0, 1] is a fixed regularization parameter, and u
satisfies the following properties:
• u is a nonnegative, nonincreasing, bounded, and con-

tinuous function on R+,
• φ : x 7→ xu(x) is non-decreasing and bounded, with
φ∞ , limx→∞ φ(x) ≤ 1

c .3

Examples of common u functions include

uTyler(x) ,
1

c

1

x
(11)

uHuber(x) ,
1

c
min

{
1,

1

x

}
. (12)

These “Tyler’s” and “Huber’s” estimators verify the condi-
tions above, with φ∞ = 1/c.

The solution ĈN (ρ) to (10) is a hybrid estimator rem-
iniscent of the original Maronna’s M-estimator of scatter
[12] and Ledoit-Wolf’s shrinkage estimator [13]. Here, like
β in the RSCM (4), ρ is a regularization parameter that
determines the tradeoff between bias (the shrinkage target,
IN ) and variance (the pooled SCM). Using ĈN (ρ)−1 as
a plug-in estimator of C−1N in (2), we should obtain a
robust version of RLDA, which we coin M-RLDA. An
important question is whether M-RLDA performs as well
as the standard (RSCM-based) RLDA approach when the
data are clean. As we will show, the answer is yes, at least
under the large-dimensional regime (Assumption 1).

A. Asymptotic performance of M-RLDA

In this section, we will make an additional (rather loose)
technical assumption needed to prove our main result:

Assumption 3.
νn , 1

N

∑N
i=1 δλi(CN ) satisfies νn → ν weakly with ν 6= δ0

almost everywhere.

We also introduce the following function that will be
important in obtaining an asymptotic equivalent of ĈN (ρ):
Definition. Define v : [0,∞) → (0, u(0)] as v(x) =
u(g−1(x)) where g−1 denotes the inverse function of
g(x) = x

1−(1−ρ)cφ(x) , which maps [0,∞) onto [0,∞).
The function v is continuous, non-increasing and onto.

The fact that φ : x 7→ xu(x) is non-decreasing and bounded
and that φ∞ , limx→∞ φ(x) ≤ 1

c guarantees that g (and
thus v) is properly defined for all ρ ∈ (0, 1]. Notice that

3We note that the fact that φ∞ ≤ 1/c (where, recall, N/n → c as
N,n→∞) is not necessary to ensure the existence of a solution to (10).
Nevertheless, it is shown in [15] that choosing such an upper bound is
helpful to manage some technical derivations when dealing with estimator
asymptotic equivalents, while remaining non-binding in practice.
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v has essentially the same properties as the u function. For
the example u functions of Tyler’s and Huber’s estimators in
(11) and (12), the corresponding v functions take the form:

vTyler(x) =
1

ρc

1

x

vHuber(x) =
1

c
min

{
1,

1

ρx

}
.

With these definitions, we can now present the following
result, with the proof relegated to Section VI-A.

Lemma 1. [Asymptotic behavior of ĈN (ρ)] Define I a
compact set included in (0, 1]. Let ĈN (ρ) be the unique
solution to (10). Then, as N,n → ∞, under Assumption 1
and Assumption 3,

sup
ρ∈I

∥∥∥ĈN (ρ)− ŜN (ρ)
∥∥∥ a.s.−−→ 0, (13)

where

ŜN (ρ) , (1− ρ)v(γ(ρ)) 1
n−2

∑n
i=1 ỹiỹ

T
i + ρIN ,

with γ(ρ) the unique positive solution to

γ(ρ)= 1
NTr

[
CN

(
(1−ρ)v(γ(ρ))

1+c(1−ρ)v(γ(ρ))γ(ρ)CN+ρIN

)−1]
.

(14)

Furthermore, the function ρ 7→ γ(ρ) is bounded, continuous
on (0,∞] and greater than zero.

Lemma 1 shows that, asymptotically, Maronna’s M-
estimators (solutions to (10)) behave like a classical reg-
ularized estimator. In fact, up to dividing ŜN (ρ) by ρ, we
retrieve the form of the RSCM: ŜN (ρ)/ρ = R̂(βρ), with
βρ set to (1−ρ)

ρ v(γ(ρ)).
Lemma 1 is similar to [15, Theorem 2]; the main dif-

ference being that the u function can be non-decreasing,
and that we work with re-centered data samples, inducing
technical difficulties in the proof (see Section VI-A).

The asymptotic equivalence can be exploited to prove that
the bilinear forms ρkaTĈN (ρ)−kb are asymptotically close
to their RSCM counterparts aTR̂(βρ)

−kb, a result that will
be important for proving that the classification error of M-
RLDA and that of RLDA are asymptotically the same.

Lemma 2. For a given ρ ∈ (0, 1], we define βρ =
(1−ρ)
ρ v(γ(ρ)), with γ the solution to (14). We then have

ŜN (ρ)/ρ = R̂(βρ), and for a,b ∈ RN such that
lim supN ||a|| < ∞ a.s., lim supN ||b|| < ∞ a.s., and
k = 1, 2, we have for all ρ ∈ (0, 1],∣∣∣ρkaTĈN (ρ)−kb− aTR̂(βρ)

−kb
∣∣∣ a.s.−−→ 0, (15)

as N,n→∞.

Proof. For k = 1, first note that∣∣∣aT(ρĈN (ρ)−1−R̂(βρ)
−1)b

∣∣∣≤K||ρĈN (ρ)−1−R̂(βρ)
−1||

(a)

≤ K||ρĈN (ρ)−1|| · ||R̂(βρ)
−1|| · ||ĈN (ρ)/ρ− R̂(βρ)||,

where (a) is due to the resolvent identity4,
and where K = ||a|| · ||b||. The fact that
ρ, βρ > 0 ensures that ||ĈN (ρ)−1|| < ∞ and
||R̂(βρ)

−1|| < ∞. From Lemma 1, we also have∥∥∥ĈN (ρ)/ρ− R̂(βρ)
∥∥∥ =

∥∥∥ĈN (ρ)/ρ− ŜN (ρ)/ρ
∥∥∥ a.s.−−→ 0.

Along with lim supN ||a|| < ∞ a.s., lim supN ||b|| < ∞
a.s., (15) is proved for k = 1.

The case k = 2 is handled by noting that∣∣∣aT(ρ2ĈN (ρ)−2−R̂(βρ)
−2)b

∣∣∣≤K||ρ2ĈN(ρ)−2−R̂(βρ)
−2||

(a)

≤ K||ρ2ĈN (ρ)−2||||R̂(βρ)
−2|| · ||ĈN (ρ)2/ρ2 − R̂(βρ)

2||

where (a) is again due to the resolvent identity. Using the
same arguments as for k = 1, we have ||ρ2ĈN (ρ)−2|| <
∞ a.s. and ||R̂(βρ)

−2|| < ∞ a.s. The convergence
||ĈN (ρ)2/ρ2 − R̂(βρ)

2|| a.s.−−→ 0 follows as a consequence
of Lemma 1 and Weyl’s theorem [25], which ensures con-
vergence of individual eigenvalues. This proves the result
for k = 2.

Remark 1. Note that Lemma 1 and Lemma 2 hold even
if the data are not Gaussian, as long as the entries of the
random vectors ỹ

(i)
j , j = 1, · · · , ni, i = 0, 1, have finite

(8 + σ)-th moment (σ > 0). However, Proposition 1 and
subsequent results in the paper depend on the Gaussianity
of the data, one of the assumptions of LDA.

Remark 2. In the proof of Lemma 2, we only use the a.s.
point-wise convergence of

∥∥∥ĈN (ρ)− ŜN (ρ)
∥∥∥ to 0, while

Lemma 1 states that this convergence holds uniformly on
ρ ∈ I. In Section VI-A, we proved this more general result as
it could be important for different applications (e.g., [19]).

Denote the class-conditional classification error of M-
RLDA by

εM−RLDA
i (ρ) , εLDA

i (ρĈN (ρ)−1).

Our main technical result is the following:

Theorem 1 (Deterministic equivalent of the classification
error of M-RLDA). Let Assumptions 1-3 hold. For each ρ ∈
(0, 1], as N,n→∞,

|εM−RLDA
i (ρ)− εM−RLDA

i (ρ)| a.s.−−→ 0,

where

εM−RLDA
i (ρ) , εRLDA

i (ρ, βρ)

with εRLDA
i (ρ, βρ) given in Proposition 1, and where we

recall that βρ = (1−ρ)
ρ v(γ(ρ)) for ρ ∈ (0, 1]. Furthermore,

ρ 7→ βρ is onto on [0,∞).

Proof. We will first show that∣∣εM−RLDA
i (ρ)− εRLDA

i (ρ, βρ)
∣∣ a.s.−−→ 0 as n,N → ∞.

4For invertible U,V, it is true that U−1−V−1 = V−1(V−U)U−1.
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To do so, we will prove that

|Gi(µi, µ̂0, µ̂1, ρĈN (ρ)−1)−G(µi, µ̂0, µ̂1, R̂(βρ)
−1)| a.s.−−→0

(16)

|D(CN, µ̂0, µ̂1, ρĈN (ρ)−1)−D(CN ,µ̂0, µ̂1,R̂(βρ)
−1)| a.s.−−→0,

(17)

where we recall that Gi(µi, µ̂0, µ̂1, ρĈN (ρ)−1) and
D(CN , µ̂0, µ̂1, ρĈN (ρ)−1), given in (7) and (8), are
used to compute the class-conditional classification error
εM−RLDA
i (ρ) = εLDA

i (ρĈN (ρ)−1) in (6).
To prove the result, we will apply Lemma 2 with a =

µi− (µ̂0 + µ̂1)/2 and b = µ̂0− µ̂1. Assumption 2 implies
lim supN ||a|| < ∞ a.s., lim supN ||b|| < ∞ a.s., by the
law of large numbers. With this, (16) follows from (15) by
taking k = 1. To prove (17), using (8), we note that∣∣∣D(CN , µ̂0, µ̂1, ρĈN (ρ)−1)−D(CN , µ̂0, µ̂1, R̂(βρ)

−1)
∣∣∣

=
∣∣∣Tr CN

(
ρ2ĈN (ρ)−1bbTĈN (ρ)−1−R̂(βρ)

−1bbTR̂(βρ)
−1
)∣∣∣

(a)

≤ ||CN || ·
∣∣∣bT

(
ρ2ĈN (ρ)−2 − R̂(βρ)

−2
)

b
∣∣∣ ,

where (a) uses the fact that Tr[AB] ≤ ||A||Tr[B] for a
symmetric matrix A and non-negative definite matrix B.
Using (15) with k = 2 leads to (17).

From (6), using (16), (17), and the fact that
√
· and Φ(·)

are continuous functions, we have proved∣∣εM−RLDA
i (ρ)− εRLDA

i (ρ, βρ)
∣∣ a.s.−−→ 0, n,N →∞.

Combining with Proposition 1 gives the convergence result.
In addition, it is shown in the proof of Lemma 1 that

ρ 7→ γ(ρ) is continuous and bounded. This, combined with
the fact that v is continuous and non-increasing, shows that
the mapping ρ 7→ βρ = (1−ρ)

ρ v(γ(ρ)) is onto on [0,∞).

Theorem 1 shows that in the absence of outliers both the
standard RLDA method and M-RLDA are equivalent over
the range of the regularization parameter, up to a simple
transformation. That is, the mapping ρ 7→ βρ suffices to
retrieve the equivalent RSCM estimator from the robust
estimator (and vice-versa using the inverse mapping).

B. Choice of estimator in outlier-free data

We have seen that in an outlier-free context, the asymp-
totic classification error associated with an M-estimator
(with a given u function) is the same as that of any other
M-estimator (i.e., with any other u function) or that of the
RSCM, up to a change in the regularization parameter. This
is in line with recent results obtained in robust estimation
theory under double asymptotics (see e.g., [15]), but it
differs from the known fact that, in finite dimensions and
in the absence of outliers, robust estimators are often sub-
optimal compared to their non-robust counterparts (see, e.g.,
[16]). In classical scenarios where n � N , there exists a
trade-off between accuracy and robustness (see, e.g., [10]).
However, in the large-dimensional regime where n and N

grow large together, there is no need to ‘choose’ between
accuracy and robustness, as we have shown that in a clean
data scenario, all estimators, robust or non-robust, are indeed
equivalent.

1) Calibration of the regularization parameter: Among
the possible ρ ∈ (0, 1], one should choose the parameter
that minimizes the classification error εM−RLDA(ρ). This
quantity is inaccessible in practice, however one may build
a data-based estimate of it. To this end, we can exploit
such an estimate ε̂RLDA(κ, β) of the true classification error
εRLDA(κ, β) for RLDA which verifies, for all κ, β > 0,∣∣ε̂RLDA(κ, β)− εRLDA(κ, β)

∣∣ a.s.−−→ 0

as N,n → ∞ [5, 6]. This result is specifically recalled in
Lemma 3 (see Section VI-C). In this section, and thereafter
in the simulations, we will assume that we have equal priors,
i.e., π0 = π1. In this case, the choice of κ in the RSCM is no
longer relevant, and we shall use the notation ε̂RLDA(β) in
lieu of ε̂RLDA(κ, β). Using this estimate, it is easy to identify
a regularization parameter βo (e.g., via a line-search) that
minimizes the classification error. Knowing βo, we can
then exploit Theorem 1, and use the mapping ρ 7→ βρ
to identify a suitable regularization parameter minimizing
the classification error or M-RLDA5. This procedure is
summarized in Algorithm 1.

Algorithm 1 Regularization parameter optimization

1) Compute the optimized regularization parameter of the
RSCM via a numerical search

βo = arg min
β>0

{
ε̂RLDA(β)

}
.

2) For a given u function and its associated M-estimator
ĈN , find a solution ρo to the equation in ρ

1

ρ

1

N
Tr
[
ĈN (ρ)

]
= 1 + βo.

3) Construct the discriminant rule with ĈN (ρo)−1.

We note that step 2 of Algorithm 1 requires the computa-
tion of ĈN (ρ) for ρ taken from a (sufficiently dense) discrete
set in (0, 1]. In practice, ĈN (ρ) can be easily computed
via a simple iterative algorithm (see e.g., [26]), which
usually takes only a few iterations to converge. Nevertheless,
each iteration requires the inversion of a (possibly large-
dimensional) matrix, which is computationally expensive.
Therefore, there is a robustness/complexity trade-off when
it comes to choosing the appropriate estimator for a given
classification task. Nevertheless, we note that unlike popular
cross-validation schemes which require dividing the labeled
data into a training set and a validation set repeatedly to
identify the best regularization parameters, an advantage of
Algorithm 1 is that it provides a robust, online estimation
of the optimal ρ, with no need for resampling.

5The mapping ρ 7→ βρ is only onto on (0,∞), and thus the uniqueness
of the optimal regularization parameter for M-RLDA is not guaranteed.
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2) Example with synthetic data: In Fig. 2, we plot the
empirical classification error associated with the RSCM,
Huber’s estimator, and Tyler’s estimator as a function of
the regularization parameters β and ρ (top and bottom x-
axes, respectively), in an outlier-free scenario. The deter-
ministic classification error, computed using Theorem 1 and
Proposition 1, and εLDA(Ĥ = C−1N ) (“oracle” estimator) are
also shown. Simulations show a very good match between
empirical and theoretical values, validating Theorem 1. The
regularization parameters ρoH , ρoT , corresponding to Huber’s
and Tyler’s estimator respectively, obtained using Algorithm
1, are identified with arrows. We remark that careful cali-
bration of the regularization parameter is important: if not
carefully chosen, the classification error can reach 47%, a
substantial increase compared with the minimal 25% error.
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Fig. 2: Classification error when using the RSCM, Huber’s,
and Tyler’s estimator as β and ρ vary (top and bottom
x-axes, respectively), for N = 150, n0 = n1 = 50,
averaged over 1,000 realizations, with a test sample size
of 5,000 samples per class. [CN ]ij = 0.9|i−j|, with eigen-
decomposition CN = V∆VT, and µ ∝ V1N . The oracle
estimator’s classification error (CN known) is also shown.

IV. APPLICATION TO REAL DATA

A. MNIST data set

Here we compare the performance of M-RLDA and
RLDA using the MNIST database [27], a set of handwritten
digits composed of 60,000 training images and 10,000
testing images from 10 classes, corresponding to the digits,
0, 1, · · · , 9. The images are constituted of N = 28 × 28 =
784 pixels.

For all 45 pairs of classes C0/C1 corresponding to digits
0/1, 0/2, etc., we computed the RSCM, Huber’s, and Tyler’s
covariance estimators from all the available training data
set (∼6,000 samples per class) and tested the corresponding
classifiers on the testing data set (∼1,000 samples per class).
For each pair, we determined the minimal testing classifica-
tion error for each classifier (i.e., based on each covariance

estimator), obtained after a sweep over all regularization
parameters ρ and β. This provides a bound on the lowest
classification error achievable on the given testing data set.
Huber’s and Tyler’s estimators are computed using a simple
iterative algorithm found in [26]. For the RSCM, we sweep
β over the range [0.001, 200], with increments of 0.01 in
[0.001, 1], 0.1 in [1, 15], and 5 in [15, 200]. For M-RLDA,
we take a range of [0.01, 1] for ρ, with increments of 0.01. In
Fig. 3 we plot, for each class pair, the classification error of
M-RLDA for Tyler’s and Huber’s estimator against that of
RLDA. In general, all estimators perform fairly well, with
an error of at most 4.1% for RLDA (for the class pairs
(7, 9) and (5, 8), indicated on the graph), and as little as
0.1% (for the class pair (0, 1)). In all but one case, Huber’s
estimator leads to a performance equal to or better than that
of the RSCM. In some cases, the gain is fairly substantial.
Most notable is the case of the class pair (4, 9), for which
Huber’s estimator leads to a 16% relative improvement in
classification error relative to RLDA. In Fig. 4, we give
examples of testing images for the class pair (4, 9) that were
correctly classified with both RLDA and the Huber-based
classifier, and examples of testing images that were correctly
classified when using Huber’s estimator but misclassified by
RLDA. In contrast to the nearly uniform gains of Huber’s
estimator, Tyler’s estimator shows mixed results in Fig. 3,
returning a classification error that is sometimes smaller
than and sometimes higher than the RSCM, depending on
the considered class pairs. Overall, when using all available
training images, these results suggest that Huber’s estimator
prevails over Tyler’s for this specific classification task.
A reason for this behavior might be the shape of the
underlying u function: in Tyler’s case some data points
(with Mahalanobis distance smaller than average) may be
overweighted compared to others, while the same data points
would have their weight capped in Huber’s case.
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Fig. 3: Classification error of M-RLDA, relative to that of
RLDA, for all class pairs of MNIST.

In Fig. 5, for the class pairs (4, 9) and (1, 7) we show the
classification error on all the testing data when the number
of training data points n = n0 + n1 is smaller. For this,
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Fig. 4: Examples of test images ((4, 9) class pair) that were correctly classified by M-RLDA with Huber’s estimator and
RLDA (top row), and of test images that were correctly classified by M-RLDA but misclassified by RLDA (bottom row).

we randomly split all the training sample and use only
part of it for training. We repeat this 100 times and report
the average results for each classifier and for an increasing
number of training data points. We observe that in cases
where the number of training images is smaller, M-RLDA
still performs slightly better than the RLDA.
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Fig. 5: Classification error of M-RLDA, relative to that of
RLDA, as the number of training data points increases.

The fact that for this classification task RLDA generally
does fairly well is likely because many of the MNIST images
are relatively easy to separate. To further test discriminative
power under ‘noisier’ conditions, we considered scenarios
where the training images were subjected to salt-and-pepper
(impulse) noise [28]. An example is shown in Fig. 6.
Considering the class pairs (3, 5) and (1, 7), we compute the
minimal testing classification error of RLDA and M-RLDA
(with Huber’s estimator) as a function of the noise density.
All the training images are used, and the performance
is measured on the available test set (∼ 1000 samples
per class). Results are averaged over 100 realizations and
shown in Fig. 7. As the noise increases, M-RLDA achieves
considerable performance improvement over RLDA, demon-
strating the value of robust estimation.

B. Phoneme data set

Next we perform simulations on the phoneme data set
from the TIMIT Acoustic-Phonetic Continuous Speech Cor-
pus. This data set was also used previously in [29]. The data
sample is composed of log-periodograms of 32-millisecond

Fig. 6: A training image subjected to salt-and-pepper noise
with different levels of noise density: from left to right,
roughly 0%, 10%, 20%, 30%, 40%, and 50% of the pixels
of the image are affected.
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Fig. 7: Classification error of RLDA and M-RLDA (Huber)
with training images subjected to salt-and-pepper-noise for
two pairs of classes.

speech frames sampled at a rate of 16 kHz. Each sample
represents one of five phonemes: “sh” as in “she”, “dcl” as
in “dark”, “iy” as the vowel in “she”, “aa” as the vowel
in “dark”, and “ao” as the first vowel in “water”. Here we
focus on the classification between the phonemes “aa” and
“ao”. For a random split of the available sample between
training and testing data, we compute the classification error
of the RSCM, Tyler’s estimator, and Huber’s estimator, as
we increase the number of training data points. The data
not used for training is used for testing purposes. We repeat
this 100 times. The average performance is reported in
Fig. 8. Here, we observe that the classification performance
is worse than for the MNIST example, suggesting that this is
a more challenging classification problem. As the number of
samples decreases, the performance degrades (as expected),
while the benefits of robust estimation, particularly Huber,
become apparent under data-limited settings.
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Fig. 8: Classification error of RLDA and M-RLDA on the
phoneme data set as the number of training sample points
increases.

V. CONCLUSIONS

We have studied the asymptotic performance of a robust
version of regularized LDA classifiers, based on robust
M-estimators of covariance within the Maronna’s class of
estimators. Considering the large-dimensional regime, we
have shown that in the absence of outliers the robust LDA
classifier performs asymptotically equivalently to standard
regularized LDA (RLDA). This equivalence is subject to a
transformation of the estimator’s regularization parameter.
We also put forward a practical algorithm to estimate
the optimal regularization parameter for the robust RLDA
classifier. Through simulations using the MNIST data set,
we have demonstrated that the proposed robust classifiers
can return superior performance when the data are corrupted
by impulsive noise. Similar conclusions have been inferred
in data-limited setting when using a phoneme data set. Such
superiority depends on the choice of covariance estimator:
when using Huber’s estimator, the robust classifier performs
consistently better than standard RLDA, but this was not
the case for Tyler’s estimator. This observation is consistent
with previous studies which established differences in the
behavior of these robust estimators under different outlying
data models [15]. Similar systematic studies in the context of
LDA remain an interesting avenue for future research. An-
other possible extension would be to consider the problem
of multiple classes, for example in the context of Fisher’s
discriminant analysis [30].

VI. APPENDIX

A. Proof of Lemma 1

The proof follows along similar lines to that of [15,
Theorem 2], but here we need to deal with re-centered data;
i.e., for each class, the sample mean is subtracted from the
data, introducing dependencies. To address this technical
difficulty, we will adopt arguments similar to [19], with
adaptations to account for the facts that two sample means

(one for each class) are involved in the calculation, and we
consider the family of u functions within Maronna’s M-
estimator class, while [19] focused on Tyler’s estimator.

We first note that the existence and uniqueness of ŜN (ρ),
as well as the continuity of the mapping ρ 7→ γ(ρ), follow
from the proof of [15, Theorem 2]. The corresponding steps
in that proof (see [15, Appendix A]) can be mirrored exactly,
noticing that everything holds as well when the function φ :
x 7→ xu(x) is non-decreasing, rather than strictly increasing
as it was assumed in [15].

Turn now to the main object of the proof, the a.s. conver-
gence of ||ĈN (ρ)− ŜN (ρ)||. Letting Yi = [y

(i)
1 , · · · ,y(i)

ni ]
be the data matrix of the ni observations from class Ci,
there exists Xi = C

1/2
N Zi such that Yi = µi1

T
ni

+Xi, with
Zi = [z

(i)
1 , · · · , z(i)ni ] a collection of independent random

vectors with standard multivariate Gaussian distribution. In
the following, similarly to ỹ

(i)
j we will denote by x̃

(i)
j

the re-centered version of sample x
(i)
j ∈ Ci, i = 0, 1,

j ∈ {0, · · · , ni}, that is:

x̃
(i)
j = x

(i)
j −

1

ni
Xi1ni

.

With this, (10) can be rewritten as

ĈN (ρ)=
(1− ρ)

n− 2

1∑
i=0

ni∑
j=1

u
(
(x̃

(i)
j )TĈN (ρ)−1x̃

(i)
j

)
x̃
(i)
j (x̃

(i)
j )T

+ ρIN . (18)

Without loss of generality, we reorganize the samples x
(i)
j

and the re-centered samples x̃
(i)
j for j ∈ {1, · · · , ni}, i =

1, 2 by writing xq = x
(0)
q , x̃q = x̃

(0)
q for q ∈ {1, · · · , n0}

and xn0+q = x
(1)
q , x̃n0+q = x̃

(1)
q for q ∈ {1, · · · , n1}.

With these notations, (18) can be rewritten in a more
convenient form. Specifically, for a fixed ρ ∈ I ,

ĈN (ρ) = (1− ρ)
1

n− 2

n∑
q=1

v(d̃q(ρ))x̃qx̃
T
q + ρIN , (19)

where d̃q(ρ) , 1
N x̃T

q Ĉ(q)(ρ)−1x̃q and Ĉ(q)(ρ) = ĈN (ρ)−
(1− ρ) 1

nv
(

1
N x̃T

q Ĉ−1N (ρ)x̃q

)
x̃qx̃

T
q .

Without loss of generality, we can further assume that
d̃1(ρ) ≤ · · · ≤ d̃n(ρ). Then, using the fact that v is non-
increasing, and that A � B ⇒ B−1 � A−1 for positive
Hermitian matrices A and B,

d̃n(ρ)=
1

N
x̃T
n

(
(1− ρ)

1

n− 2

n−1∑
q=1

v(d̃q(ρ))x̃qx̃
T
q +ρIN

)−1
x̃n

≤ 1

N
x̃T
n

(
(1− ρ)

1

n− 2

n−1∑
q=1

v(d̃n(ρ))x̃qx̃
T
q +ρIN

)−1
x̃n,

and since x̃n 6= 0 with probability 1,

x̃T
n

(
1− ρ
n− 2

n−1∑
q=1

d̃n(ρ)v(d̃n(ρ))x̃qx̃
T
q +ρd̃n(ρ)IN

)−1
x̃n≥N.

(20)
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Similarly,

x̃T
1

(
1− ρ
n− 2

n∑
q=2

d̃1(ρ)v(d̃1(ρ))x̃qx̃
T
q +ρd̃1(ρ)IN

)−1
x̃1≤N.

We want to show that γ(ρ) is a good deterministic approxi-
mation of d̃q(ρ) (for all q = 1, · · · , n), a result that we will
later leverage to show that ĈN (ρ) in (19) is asymptotically
similar to ŜN (ρ). Specifically, we will show that

sup
ρ∈I

max
1≤q≤n

∣∣∣d̃q(ρ)− γ(ρ)
∣∣∣ a.s.−−→ 0. (21)

This will be proven by a contradiction argument: assume
there exists a sequence {ρn}∞n=1 over which d̃n(ρn) >
γ(ρn) + l infinitely often, for some l > 0 fixed. Con-
sider a subsequence of {ρn}∞n=1 such that ρn → ρ1;
since {ρn}∞n=1 is bounded, such subsequence exists by the
Bolzano-Weierstrass theorem. On this subsequence and for
all large n, (20) yields

1≤ x̃T
n

N

(
1−ρn
n−2

n−1∑
q=1

ψ(γ(ρn)+l)x̃qx̃
T
q +ρn(γ(ρn)+l)IN

)−1
x̃n,

(22)

where ψ(x) , xv(x) is a non-decreasing function. Denote

ẽq,
x̃T
q

N

1−ρn
n−2

∑
j 6=q

ψ(γ(ρn) + l)x̃jx̃
T
j +ρn(γ(ρn)+l)IN

−1x̃q,

so that, with (22), we have ẽn ≥ 1 on the chosen subse-
quence. It turns out that ẽn is asymptotically equivalent to

en,
xT
n

N

1−ρn
n−2

∑
j 6=n

ψ(γ(ρn) + l)xjx
T
j +ρn(γ(ρn)+l)IN

−1xn

which involves the zero-mean data samples xj . Specifically:

Proposition 2. As N,n→∞,

max
1≤q≤n

|ẽq − eq|
a.s.−−→ 0. (23)

Proof. See Section VI-B.

We can now leverage a fact, proven in [15, Theorem 2]:
on the chosen subsequence and for any given ρ1 ∈ (0, 1],
en

a.s.−−→ e < 1. Due to Proposition 2, this implies that
ẽn

a.s.−−→ e < 1, in contradiction with ẽn ≥ 1 from (22).
It follows that there is no sequence of ρn such that

d̃n(ρn) > γ(ρn) + l infinitely often. Consequently, d̃n(ρ) ≤
γ(ρ) + l for all large n a.s., uniformly on ρ ∈ I . Following
the same strategy, we prove that d̃1(ρ) ≥ γ(ρ) − l for all
large n a.s. uniformly on ρ ∈ I . As this is true for arbitrarily
small l > 0, we then have that supρ∈I max1≤q≤n |d̃q(ρ) −
γ(ρ)| a.s.−−→ 0. By continuity of v, we also have

sup
ρ∈I

max
1≤q≤n

|v(d̃q(ρ))− v(γ(ρ))| a.s.−−→ 0. (24)

Now, note that

sup
ρ∈I

∥∥∥ĈN (ρ)− ŜN (ρ)
∥∥∥ ≤ ∥∥∥∥∥ 1

n− 2

n∑
q=1

x̃qx̃
T
q

∥∥∥∥∥
× sup

ρ∈I
max
1≤q≤n

(1− ρ)
∣∣∣v(d̃q(ρ))− v(γ(ρ))

∣∣∣ . (25)

We will show that the right-hand side of (25) goes to 0 a.s.
With (24), this follows by showing that

lim sup
n

∥∥∥∥∥ 1

n− 2

n∑
q=1

x̃qx̃
T
q

∥∥∥∥∥ =<∞ a.s.

Recall that x̃
(i)
j = x

(i)
j − 1

ni
Xi1ni

, so that

1

n− 2

n∑
q=1

x̃qx̃
T
q =

1

n− 2

1∑
i=1

ni∑
j=1

x̃
(i)
j (x̃

(i)
j )T = M0 +M1,

with

Mi=
1

n− 2

ni∑
j=1

x
(i)
j

(
x
(i)
j

)T
+

1

n− 2

ni∑
j=1

1

ni
Xi1ni

(
1

ni
Xi1ni

)T

− 1

n− 2

ni∑
j=1

1

ni
Xi1ni

(
x
(i)
j

)T
− 1

n− 2

ni∑
j=1

x
(i)
j

(
1

ni
Xi1ni

)T

.

(26)

We will show that the spectral norm of each term on the
RHS of (26) is bounded for all large n a.s. For the first

term, we have lim supn

∥∥∥∥ 1
n−2

∑ni

j=1 x
(i)
j

(
x
(i)
j

)T∥∥∥∥ <∞ a.s.

as a direct consequence of Assumption 3 and [31]. For the
second term in (26), we have

lim sup
n

∥∥∥∥∥∥ 1

n− 2

ni∑
j=1

(
1

ni
Xi1ni

)(
1

ni
Xi1ni

)T
∥∥∥∥∥∥

≤ lim sup
n

∥∥∥∥ 1

n− 2
XT
i Xi

∥∥∥∥ <∞ a.s. (27)

For the third term (and similarly for the fourth term),∥∥∥∥∥∥ 1

n− 2

ni∑
j=1

x
(i)
j

(
1

ni
Xi1ni

)T
∥∥∥∥∥∥

(a)
=

ni
n− 2

∥∥∥∥∥∥∥
 1

ni

ni∑
j=1

z
(i)
j

T

CN

 1

ni

ni∑
j=1

z
(i)
j


∥∥∥∥∥∥∥

≤ ni
n− 2

‖CN‖

 1

ni

ni∑
j=1

z
(i)
j

T 1

ni

ni∑
j=1

z
(i)
j

 ,

where (a) uses the fact that x
(i)
j = C

1/2
N z

(i)
j for j =

1, · · · , ni. By the law of large numbers, as N,n→∞,∣∣∣∣∣∣∣
 1

ni

ni∑
j=1

z
(i)
j

T 1

ni

ni∑
j=1

z
(i)
j

− ci
∣∣∣∣∣∣∣ a.s.−−→ 0,
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where we introduced ci , c/πi, the limiting ratio of the
number of variables to the number of samples from class
Ci. It then follows from Assumption 1 that

lim sup
n

∥∥∥∥∥∥ 1

n− 2

ni∑
j=1

x
(i)
j

(
1

ni
Xi1ni

)T
∥∥∥∥∥∥ ≤ ci ‖CN‖<∞ a.s.

Putting everything together, the spectral norm of Mi,
i = 0, 1 is bounded for all large n a.s, which implies
lim supn

∥∥∥ 1
n−2

∑n
q=1 x̃qx̃

T
q

∥∥∥ < ∞ a.s. Together with (24)
and (25), we eventually have

sup
ρ∈I

∥∥∥ĈN (ρ)− ŜN (ρ)
∥∥∥ a.s.−−→ 0.

B. Proof of Proposition 2

For q ∈ {1, · · · , n}, denote

Ẽq=

1− ρn
n− 2

∑
j 6=q

ψ(γ(ρn) + l)x̃jx̃
T
j +ρn(γ(ρn) + l)IN

−1

and

Eq=

1− ρn
n− 2

∑
j 6=q

ψ(γ(ρn) + l)xjx
T
j +ρn(γ(ρn) + l)IN

−1,
such that

ẽq =
1

N
x̃T
q Ẽqx̃q, eq =

1

N
xT
q Eqxq .

We have, for all ζ > 0,

P

(
max
1≤q≤n

|ẽq − eq| > ζ

)
(a)

≤
n∑
q=1

P (|ẽq − eq| > ζ)

(b)

≤ n
E[|ẽq − eq|p]

ζp
, (28)

where (a) and (b) are respectively due to Boole’s and
Markov’s inequalities. In the following we will prove that

E[|ẽq − eq|p] ≤
Kp

Np
(29)

for some p ≥ 1, where Kp depends on p but not on N .
With this result, the proof of Proposition 2 then follows by
taking p > 2 and applying the Borel-Cantelli lemma.

In proving (29), we start by fixing q ∈ {1, · · · , n} such
that the associated xq belongs to class C0. The case where
xq belongs to class C1 can be handled similarly. Write

ẽq − eq =
1

N
x̃T
q Ẽqx̃q −

1

N
xT
q Eqxq

=

−D︷ ︸︸ ︷
1

N
x̃T
q (Ẽq −Eq)x̃q +

−A−B+C︷ ︸︸ ︷
1

N
x̃T
q Eqx̃q −

1

N
xT
q Eqxq,

with

A ,
1

N

1

n0
1T
n0

XT
0 Eqxq

B ,
1

N
xT
q Eq

1

n0
X01n0

C ,
1

N

1

n0
1T
n0

XT
0 Eq

1

n0
X01n0

D , D1 +D2 +D3 ,

with

D1 =
1

N
x̃T
q Ẽq(1− ρn)ψ(γ(ρn) + l)

1

n− 2

× 1

n20

∑
1≤j≤n0
j 6=q

X01n0
1T
n0

XT
0 Eqx̃q

D2 =− 1

N
x̃T
q Ẽq(1− ρn)ψ(γ(ρn) + l)

1

n− 2

× 1

n0

∑
1≤j≤n0
j 6=q

(xj1
T
n0

XT
0 −X01n0

xT
j )Eqx̃q

D3 =
1

N
x̃T
q Ẽq(1− ρn)ψ(γ(ρn) + l)

1

n− 2
×(

1

n21

n∑
j=n0+1

X11n1
1T
n1

XT
1 −

1

n1

n∑
j=n0+1

(xj1
T
n1

XT
1 −X11n1

xT
j )

)
×Eqx̃q ,

obtained using the resolvent identity and the fact that x̃q =
xq − 1

n0
X01n0

. From Minkowski’s inequality,

E [|ẽq − eq|p] ≤ (30)

(E1/p[|A|p] + E1/p[|B|p] + E1/p[|C|p] + E1/p[|D|p])p .

Thus, it is enough to show that E[|A|p] ≤ KpA

Np , E[|B|p] ≤
KpB

Np , E[|C|p] ≤ KpC

Np and E[|D|p] ≤ KpD

Np .

Denote X(q) the data matrix X from which the data
sample xq was removed. We start by writing

E[|A|p] =
1

Np

1

np0
E
[∣∣xT

q EqX01n0
1T
n0

XT
0 Eqxq

∣∣p/2]
=

1

Np

1

np0
E
[∣∣∣xT

q Eq

(
xq + X

(q)
0 1n0−1

)
×
(
xq + X

(q)
0 1n0−1

)T
Eqxq

∣∣∣p/2] . (31)

Developing (31) and using Jensen’s inequality, we can write

E[|A|p]
(a)

≤ A1 +A2 +A3 +A4 with

A1 =
4p/2−1

Npnp0
E
[∣∣xT

q Eqxqx
T
q Eqxq

∣∣p/2]
A2 =

4p/2−1

Npnp0
E

[∣∣∣xT
q EqX

(q)
0 1n0−11

T
n0−1X

(q)T
0 Eqxq

∣∣∣p/2]
A3 =

4p/2−1

Npnp0
E

[∣∣∣xT
q EqX

(q)
0 1n0−1x

T
q Eqxq

∣∣∣p/2]
A4 =

4p/2−1

Npnp0
E

[∣∣∣xT
q Eqxq1

T
n0−1X

(q)T
0 Eqxq

∣∣∣p/2] .
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For term A1,

A1 =
1

Np

1

np0
· 4p/2−1E

[∣∣xT
q Eqxq

∣∣p]
≤ 1

Np

1

np0
· 4p/2−1E

[
‖zq‖2p‖Eq‖p‖‖CN‖p

]
.

We have

‖Eq‖p ≤
1

(γ(ρn) + l)pρpn
,

and by Minkowski’s inequality,

E[‖zq‖2p] = E(
N∑
j=1

z2j,q)
p ≤ NpE|z1,q|2p ≤ KpN

p .

Thus

A1 ≤
1

Np

Kp‖CN‖p4p/2−1cpN
(γ(ρn) + l)pρpn

≤ KpA1

Np
.

Next, consider A2:

A2

(a)

≤ 23p/2−3

Npnp0

(
E
[∣∣xT

q QNxq − Tr [QN ]
∣∣p/2]

+E
[
|Tr [QN ]|p/2

])
(b)

≤ Kp

Npnp0
E

[(
Ep/4|x1,q|4 Tr[QNQT

N ]
)p/4

+E|x1,q|p Tr[(QNQT
N )p/4]+E |Tr [QN ]|p/2

]
=

Kp

Npnp0

(
Ep/4|x1,q|4+E|x1,q|p+1

)
E‖EqX

(q)
0 1n0−1‖p

≤ Kp

Npnp0

(
Ep/4|x1,q|4 + E|x1,q|p + 1

)
× E

(
‖Eq‖p‖CN‖p/2

∥∥∥X(q)
0 1n0−1

∥∥∥p)
≤ 1

Np

Kp‖CN‖p/2
(
Ep/4|x1,q|4 + E|x1,q|p + 1

)
(γ(ρn) + l)pρpn

× E
∥∥∥∥ 1

n0
X

(q)
0 1n0−1

∥∥∥∥p
≤ KpA2

/Np ,

where QN = EqX
(q)
0 1n0−11

T
n0−1X

(q)T
0 Eq , (a) follows

from Jensen’s inequality and (b) follows from the trace
lemma [32, Lemma B.26].

For A3,

A3 ≤
4p/2−1

Npnp0
E1/2

[∣∣∣xT
q EqX

(q)
0 1n0−1

∣∣∣p]E1/2
[∣∣xT

q Eqxq
∣∣p].

As we have A1 ≤ KpA1
/Np and A2 ≤ KpA2

/Np, we
obtain A3 ≤ KpA3

/Np. Following the same reasoning as
for A3, we also get A4 ≤ KpA4/N

p. Therefore, we obtain

E[|A|p] ≤ A1 +A2 +A3 +A4 ≤ KpA/N
p .

The same reasoning gives E[|B|p] ≤ KpB/N
p.

As for |C|, we have

E[|C|p] ≤ 1

Np
E

[∥∥∥∥ 1

n0
Z01n0

∥∥∥∥2p ‖CN‖p‖Ep
q‖

]

≤ ‖CN‖p

Np(γ(ρn) + l)pρpn
E

[∥∥∥∥ 1

n0
Z01n0

∥∥∥∥2p
]

≤ KpC

Np
.

Let us now analyze |D|. We will show that E[|D1|p] ≤
KpD1

/Np, E[|D2|p] ≤ KpD2
/Np, and E[|D3|p] ≤

KpD3
/Np, which will prove that E[|D|p] ≤ KpD/N

p.

We start with D1, the analysis of D2 and D3 following
similarly. We have

E[|D1|p]
(a)

≤ 1

Np
(ψ(γ(ρn) + l))

p

× E1/2[|D1a|2p]E1/2[|D1b|2p]
(b)

≤ 1

Np
(ψ(γ(ρn) + l))

p

×(E1/2p[|D1c|2p]+E1/2p[|D1d|2p])pE1/2[|D1b|2p]
(32)

where (a) follows from the Cauchy-Schwarz inequality, (b)
follows from Minkowski’s inequality, and

D1a =

(
xq −

1

n0
X01n0

)T

Ẽq
n0 − 1

n20
X01n0

D1b =
1

n− 2
1T
n0

XT
0 Eq

(
xq −

1

n0
X01n0

)
D1c = xT

q Ẽq
n0 − 1

n20
X01n0

D1d =

(
1

n0
X01n0

)T

Ẽq
n0 − 1

n20
X01n0

.

We will prove that E[|D1b|2p] ≤ Kpb, E[|D1c|2p] ≤ Kpc

and E[|D1d|2p] ≤ Kpd. Following the analysis of E[|A|p]
and E[|C|p], we obtain E[|D1b|2p] ≤ Kpb. For E[|D1d|2p],

E[|D1d|2p] ≤
1

n2p0
E

[∥∥∥Ẽq

∥∥∥2p ‖CN‖2p
∥∥∥∥ 1

n0
Z01n0

∥∥∥∥4p
]

≤ ‖CN‖2p

n2p0 (γ(ρn) + l)2pρ2pn
E

∥∥∥∥ 1

n0
Z01n0

∥∥∥∥4p
≤ Kpd .

Let us analyze D1c. As xq is not independent of Ẽq ,
we cannot follow the same procedure as for our analysis
of A to determine the order of E[|D1c|2p]. To proceed, we
decompose Ẽq into two parts, one that is independent of xq ,
and the remainder. Recalling that xq belongs to class C0,
we first write

∑
j 6=q x̃jx̃

T
j = E + F, where

E=X̃1X̃
T
1 +X

(q)
0 (X

(q)
0 )T−n0+1

n20
X

(q)
0 1n0−1(X

(q)
0 1n0−1)T

F=− 1

n20
xq(X

(q)
0 1n0−1)T− 1

n20
X

(q)
0 1n0−1x

T
q +

n0−1

n20
xqx

T
q ,
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such that E is independent of xq . Then, using the resolvent
identity, we rewrite D1c as:

D1c = xT
q G

n0 − 1

n20
X01n0

+ xT
q H

n0 − 1

n20
X01n0

, (33)

where

G =

(
(1− ρn)ψ(γ(ρn) + l)

1

n− 2
E + ρn(γ(ρn) + l)IN

)−1
H = −Ẽq

(
(1− ρn)ψ(γ(ρn) + l)

1

n− 2
F

)
×
(

(1− ρn)ψ(γ(ρn) + l)
1

n− 2
E + ρn(γ(ρn) + l)IN

)−1
.

Using Jensen’s inequality,

E[|D1c|2p] ≤ 22p−1
(
E[|G|2p] + E[|H|2p]

)
,

where G and H are the two terms on the RHS of (33).

Using similar reasoning and calculus as before (see e.g.,
terms A and B above), we can prove that E[|G|2p] ≤ KpG.

For E[|H|2p], we can write the equation (33) at the top
of the next page, which follows from the Cauchy-Schwarz
inequality, and since∥∥∥∥∥
(

(1− ρn)ψ(γ(ρn) + l)
E + F

n− 2
+ ρn(γ(ρn) + l)IN

)−1∥∥∥∥∥
and∥∥∥∥∥
(

(1− ρn)ψ(γ(ρn) + l)
E

n− 2
+ ρn(γ(ρn) + l)IN

)−1∥∥∥∥∥
are both less than 1

ρn(γ(ρn)+l)
. Let us prove that

E
∥∥∥ 1√

n−2F
∥∥∥8p ≤ KpF . Denoting

F = F1 + F2 + F3,

with

F1 = − 1

n20
xq(X

(q)
0 1n0−1)T

F2 = − 1

n20
X

(q)
0 1n0−1x

T
q

F3 =
n0 − 1

n20
xqx

T
q ,

we have (34) shown at the top of the next page. Combining
(33) with (34), we have proved that E[|H|2p] ≤ KpH , from
which E[|D1c|2p] ≤ Kpc follows. With E[|D1b|2p] ≤ Kpb,
E[|D1c|2p] ≤ Kpc, and E[|D1d|2p] ≤ Kpd, (32) leads to
E[|D1|p] ≤ KpD1

/Np.

Similarly, we can also obtain E[|D2|p] ≤ KpD2
/Np,

E[|D3|p] ≤ KpD3
/Np, and E[|D4|p] ≤ KpD4

/Np. As
D = D1 +D2 +D3 +D4, the Minkowski inequality gives
E[|D|p] ≤ KpD/N

p. Using the pth-moment bounds for
A,B,C and D in (30), we have shown that (29) holds,
and the proof is complete.

C. Estimate of the classification error of RLDA

Lemma 3. [5, Theorem 2], [6, Theorem 10] Under Assump-
tions 1 and 2, write

ε̂RLDA
i (κ, β)=Φ

(−1)i+1Gi+
(n0+n1−2)δ̂

ni
+(−1)iκ logπ1

π0√
(1 + βδ̂)2D


with

δ̂ =
1

β

N
n0+n1−2 −

Tr[R̂(β)−1]
n0+n1−2

1− N
n0+n1−2 + Tr[R̂(β)−1]

n0+n1−2

,

and with Gi = G(µ̂i, µ̂0, µ̂1, R̂(β)−1) and D =
D(R̂, µ̂0, µ̂1, R̂(β)−1) defined in (7) and (8), respectively.
Then for all β > 0, as N,n→∞,

ε̂RLDA
i (κ, β)− εRLDA

i (κ, β)
a.s.−−→ 0.
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