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Lemmas and Proofs for the Ergodic Sum-Rate

of Proportional Fair Scheduling
David Morales-Jimenez and Angel Lozano

Abstract

This technical note is a supportive document which provides the lemmas and proofs for the paper

entitled “Ergodic sum-rate of proportional fair scheduling with multiple antennas”, submitted to the IEEE

International Symposium on Information Theory 2013 (ISIT 2013).

I. INTRODUCTION

The paper [1] deals with the ergodic sum-rate of a proportional fair scheduler (PFS) in wireless systems

where both the base stations and the user terminals are equipped with multiantenna transceivers. The

scheduling process is allowed to operate jointly over multiple parallel subchannels, e.g., those created by

frequency-division multiaccess/multiplexing. Exact expressions are derived for arbitrary numbers of users

and antennas, and arbitrary fading distributions. These results are also specialized to Rayleigh fading and,

further, to the low- and high-power regimes. New, more informative expressions are as well derived for

the regime of large numbers of users.

Two lemmas support the derivations and results in [1]. This technical note provides these lemmas

along with their proofs.

II. LEMMAS

Lemma 1: Let the normalized SNRs for all users (ρ̃1, . . . , ρ̃Kt
) be i.i.d. RVs with CDF given by

Fρ̃ (ξ) =

(
1

Γ (ν)
γ (ν, ξ)

)δ
, (1)

where γ (·, ·) is the lower incomplete gamma function, and the parameters δ and ν depend on the

multiantenna scheme, as specified in [1, Table I]. Then, the ergodic rate for subchannel i if user k

is selected for transmission is

E [Ii,k] = − log2 e

i∑
r=0

αi,r

δ(Kt−i+r)∑
n=1

(
δ(Kt − i+ r)

n

)
(−1)n en/ρk

(ν−1)n∑
b=0

β
(ν)
n,b

b!

ρbk
Γ

(
−b, n

ρk

)
(2)
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where Γ (·, ·) is the upper incomplete gamma function, αi,r are the combinatorial coefficients defined in

[1, (12)], and

β
(1)
n,b = 1

β
(2)
n,b =

n!

b! (n− b)!

β
(ν)
n,b =

∑b b

ν−1c
iν=0

∑b b−(ν−1)iν
ν−2 c

iν−1=0
· · ·
∑b b−3i4−...−(ν−1)iν

2 c
i3=0

n!

(b−
∑ν

r=3 (r − 1)ir)! (n− b+
∑ν

r=3 (r − 2)ir)!
∏ν
r=3 (r − 1)!ir ir!

, ν > 2. (3)

Proof: See Appendix A.

Lemma 2: The ergodic sum-rate expands as C = Ċ (0) ρ+ C̈(0)
2 ρ2 + o(ρ2) with

Ċ (0) =
− log2 e

Ka
F0 (4)

C̈ (0) =
2 log2 e

Ka
F1 (5)

and

Fj =

Ka−1∑
i=0

αi

δ(Kt−i)∑
n=1

(
δ(Kt − i)

n

)
(−1)n

(ν−1)n∑
b=0

β
(ν)
n,b

(b+ j)!

nb+1+j
(6)

Proof: See Appendix B.

APPENDIX A

PROOF OF LEMMA 1

The expectation E [Ii,k] is obtained after using (1) in [1, (11)], working the resulting integral out, and

effecting some algebraic manipulations. Next, the key steps in the derivation are summarized. Substitution

of (1) into [1, (11)] yields

E [Ii,k] =

∫ ∞
0

(
1−

i∑
r=0

αi,r
1

Γδ(Kt−i+r) (ν)
γδ(Kt−i+r)

(
ν,

2ξ − 1

ρk

))
dξ. (7)

Using the finite sum expression for the incomplete gamma function and the binomial expansion, (7) can

be rewritten as

E [Ii,k] =

∫ ∞
0

dξ −
i∑

r=0

αi,r

δ(Kt−i+r)∑
n=0

(
δ(Kt − i+ r)

n

)
(−1)n

∫ ∞
0

e
−n 2ξ−1

ρk

(
ν−1∑
m=0

(2ξ − 1)m

ρmk m!

)n
dξ.

(8)
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Noting that
∑i

r=0 αi,r = 1, the term corresponding to n = 0 in (8) cancels out with
∫∞
0 dξ and thus

E [Ii,k] = −
i∑

r=0

αi,r

δ(Kt−i+r)∑
n=1

(
δ(Kt − i+ r)

n

)
(−1)n

∫ ∞
0

e
−n 2ξ−1

ρk

(
ν−1∑
m=0

(2ξ − 1)m

ρmk m!

)n
dξ. (9)

Applying the multinomial theorem to (9), we arrive at

E [Ii,k] = −
i∑

r=0

αi,r

δ(Kt−i+r)∑
n=1

(
δ(Kt − i+ r)

n

)
(−1)n

∑
m1+...+mν=n

n!

m1! · ... ·mν !

1

cm

∫ ∞
0

e
−n 2ξ−1

ρk
(2ξ − 1)bm

ρbmk
dξ (10)

with bm =
∑ν

r=1 (r − 1)mr, and cm =
∏ν
r=1 (r − 1)!mr .

With proper rearrangement of the multinomial terms, it can be shown that∑
m1+...+mν=n

n!

m1! · ... ·mν !

abm

cm
=
∑(ν−1)n

b=0
β
(ν)
n,ba

b (11)

with β(ν)n,b as defined in (3).

Plugging (11) into (10), we obtain

E [Ii,k] = −
i∑

r=0

αi,r

δ(Kt−i+r)∑
n=1

(
δ(Kt − i+ r)

n

)
(−1)n

(ν−1)n∑
b=0

β
(ν)
n,b

∫ ∞
0

e
−n 2ξ−1

ρk
(2ξ − 1)b

ρbk
dξ. (12)

The integrals in (12) are solved by making the change of variable y = 2ξ−1
ρk

, using [2, 3.353.5] and

the relation between the exponential integral and the incomplete gamma [2, 8.359], and some algebra,

resulting in ∫ ∞
0

e
−n 2ξ−1

ρk
(2ξ − 1)b

ρbk
dξ = log2(e)e

n/ρk b!

ρbk
Γ

(
−b, n

ρk

)
. (13)

Substitution of (13) into (12) yields the final expression in [1, (14)].

APPENDIX B

PROOF OF LEMMA 2

The low-SNR expansion follows from the expression of the ergodic sum-rate in [1, (18)], by replacing

the products of exponentials and incomplete gamma functions with an approximate form. Based on [2,

8.357], it holds that

en/ρ

ρb
Γ

(
−b, n

ρ

)
=

(
1

n

)b+1 ρ

b!

∑R

m=0

(−1)m(m+ b)!ρm

nm
+ o

(
ρR+2

)
. (14)
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In order to approximate the ergodic sum-rate as C = Ċ (0) ρ + C̈(0)
2 ρ2 + o

(
ρ3
)
, we use (14) with

R = 1 in [1, (18)], which results in

C =
− log2 e

Ka

Ka−1∑
i=0

αi

δ(Kt−i)∑
n=1

(
δ(Kt − i)

n

)
(−1)n

(ν−1)n∑
b=0

β
(ν)
n,b

(
b!ρ

nb+1
− (b+ 1)!ρ2

nb+2

)
+ o

(
ρ3
)
. (15)

Finally, Ċ (0) and C̈ (0) are obtained after identifying (15) with C = Ċ (0) ρ+ C̈(0)
2 ρ2 + o

(
ρ3
)
.
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