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SUMMARY

Exact closed-form analytical expressions are derived for the average bit error probability of multibranch
switched diversity systems over independent and identically Nakagami-m distributed fading channels. Prac-
tical schemes that use noncoherent or differentially coherent symbol detection are considered. The general
bit error probability expression derived in this paper includes as particular cases the following signaling
formats: orthogonal binary signaling, correlated binary signaling, differential phase-shift keying, and dif-
ferential quadrature phase-shift keying. Finally, we apply our analytical results to study the impact of the
switching threshold selection on the system performance. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Switched diversity has been thoroughly studied by communication theorists and engineers as an
attempt for exploiting space diversity by simple practical systems [1–3]. Basically, this technique
tracks a given diversity branch as long as channel quality stays above certain predefined threshold
and switches to another branch when this condition fails. From the signal processing point of view,
switched diversity is simpler to implement than maximal ratio combining, equal gain combining, or
selection combining. The simplest and best studied switched diversity systems are switch-and-stay
combining (SSC) and switch-and-examine combining (SEC) over independent and identically dis-
tributed (i.i.d.) channels. A comprehensive description of such systems can be found in [3, Chap. 9]
and the references therein.

Besides, binary frequency-shift keying (FSK) signaling with noncoherent symbol detection is
often adopted in practical SSC and SEC systems as a simple (low-complexity) modulation scheme.
In such cases, signals can be chosen to be nonorthogonal at the transmitter to reduce bandwidth
utilization, at the expense of certain performance degradation [4, Chap. 5]. Moreover, the perfor-
mance of these systems can be improved with slightly higher complexity modulation schemes such
as phase-shift keying (PSK) with differentially coherent detection. As simple modulation schemes,
noncoherent and differentially coherent detection are of particular interest in low-complexity SEC
receivers, which could be part of a multihop or relay network.
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This paper focuses on the performance analysis of SSC and SEC over i.i.d. Nakagami-m fading
channels. In [5] and [6], an analytical framework was presented for the performance of coher-
ent, noncoherent, and differentially coherent detection. Adopting the moment generating function
(MGF) approach, results in [5] and [6] for the average bit error probability (BEP) were in the form
of single finite integrals. In [7], a new analysis was performed to calculate these integrals in exact
closed form for coherent detection (M-PSK, M-PAM, and M-QAM) in Nakagami-m fading chan-
nels with integer parameter m. However, to the best of the authors’ knowledge, exact closed-form
expressions for noncoherent and differentially coherent detection are not available in the literature.
Only very recently, new results have appeared in [8] for the particular case of a dual-branch SSC
system with noncoherent detection of nonorthogonal binary FSK under Rayleigh fading.

In this paper, a unifying closed-form BEP analysis is presented for noncoherent and differen-
tially coherent detection in multibranch switched diversity systems over i.i.d. Nakagami-m fading
channels. The analysis in this paper extends previous results obtained in [8], providing a threefold
generalization: first, the number of branches is extended to an L-branch diversity system; second,
the analysis is extended to the more general Nakagami-m fading model; and third, the BEP analysis
includes other modulation schemes such as the differential quadrature PSK (DQPSK).‡ Interest-
ingly, recent mathematical results obtained in [9] for a class of incomplete cylindrical integrals,
which have been used to analyze maximal ratio combining systems with coherent detection, are
found to be crucial in the unified analysis that is presented in this paper. The general BEP expres-
sion derived here is in the form of a finite combination of Marcum Q, Bessel, and elementary
functions, thus avoiding the need for numerical integration.

The remainder of this paper is structured as follows. Section 2 is devoted to characterize the
statistics of the analyzed switched diversity systems. Then, exact and approximated closed-form
expressions for the average BEP are derived in Section 3. Some numerical results are provided in
Section 4, and finally, conclusions are drawn in Section 5.

2. CLASSICAL MULTIBRANCH SWITCH-AND-EXAMINE COMBINING STATISTICS

Let us assume a switched diversity system with L i.i.d. Nakagami-m branches. It is known that the
output statistics of SSC does not depend on the number of diversity branches and that SEC has the
same output statistics as SSC when LD 2 [6]. As noted in [7], the average BEP in SSC is obtained
by setting LD 2 in SEC. Therefore, we restrict the analysis to the general L-branch SEC.

For SEC, the probability density function (PDF) of the instantaneous signal-to-noise ratio (SNR)
per symbol �S at the output of the combiner is [3, eq. (9.341)]
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where f� and F� are the PDF and the cumulative distribution functions of the instantaneous SNR
per symbol � on each diversity branch, whereas �T denotes the switching threshold. The Nakagami-
m distribution with integer m is considered for � , which covers many cases of interest in practice,
in particular, Rayleigh fading when mD 1. For an integer Nakagami m-parameter, it is well known
that F� .�T / and f� .x/ in Equation (1) are given by [3, table (9.5)] [10, eq. (8.352-2)]

F� .�T /D 1� e�
m
N�
�T

m�1X
`D0

�`T
.`/Š

�
m

N�

�`
(2)

and

f� .x/D

�
m

N�

�m
xm�1

.m� 1/Š
e�m

x
N� , (3)

where N� is the average SNR per symbol on each diversity branch.

‡Our analytical results are applicable to any modulation format whose conditional BEP fits into the general expression (5).
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Table I. Parameters for several noncoherent and differentially coherent modulation formats.
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DPSK, differential phase-shift keying; DQPSK, differential quadrature phase-shift keying.
�Where 06 � 6 1 is the magnitude of the cross-correlation coefficient between the two signals.

3. AVERAGE BIT ERROR PROBABILITY

3.1. General and exact analysis

Given the conditional BEP Pb .x/
�
D Pr ¹bit error j�S D x º and the PDF at the output of the

combiner f�S , the average BEP for multibranch SEC is calculated by

NPb D

Z 1
0

Pb .x/ f�S .x/ dx. (4)

A generic expression for the conditional BEP of noncoherent and differentially coherent
modulations is given by [3, chap. 8] [11, eq. (4B.21)]
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where I0 is the zero-order first-kind modified Bessel function,Q1 is the first-order MarcumQ func-
tion defined in [3, Sect. 4.2], and a, b, and � are modulation-dependent parameters. A number of
special cases are of particular importance, and their parameters§ are specified in Table I.

In some special cases, the conditional BEP takes a simple form. When a D 0, for example, see
orthogonal binary signaling and differential phase-shift keying (DPSK) in Table I, expression (5)
reduces to [3, eq. 4.45]

Pb .x/D
1

1C �
e�

b2

2 x . (6)

Thus, the general approach that follows can be easily circumvented, and the average BEP calcu-
lations are relatively simple. A similar simplification occurs when b D 0. This fact justifies the
assumption ab ¤ 0 adopted in the subsequent analysis.¶

One approach to compute the average BEP in Equation (4) is to express Equation (5) by its alter-
native form as a single finite integral, and then the integration over �S can be obtained from its MGF,
which leads to a single finite integral expression [5, eq. (39)]. Here, the average BEP is derived by
following a different approach in order to arrive at an exact closed-form expression.

Substituting Equations (5) and (1) into Equation (4) and after some simple algebraic manipula-
tions, the following generic expression for the average BEP is obtained:
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§Note that Equation (5) is defined in terms of the instantaneous SNR per symbol �S ; thus, DQPSK parameters slightly
differ from those given in [11] or [3].

¶Nevertheless, our expressions are also valid for aD 0 or bD 0 if these cases are properly interpreted as limits.
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where ˛L,m .�T I N�/ are known coefficients defined as
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with F� .�T / given in Equation (2) and where I1, I2, J1, and J2 are integrals defined as
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What remains to achieve the goal of this analysis is to show that I1, I2, J1, and J2 can be given in
exact closed form by a finite combination of Marcum Q, Bessel, and elementary functions.

The complete integrals I1 and I2 are crucial for performance analysis of differentially coher-
ent and noncoherent modulations in fading channels and were studied in [12, 13]. In [13], an exact
closed-form expression for I1 was derived in terms of the Gauss hypergeometric function:
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where c1 , a2 C b2 C 2.m= N�/. Applying [14, eq. 15.4.10] and the recurrence relations [10, eq.
8.731-4] and [10, eq. 8.914-1], the following identities are obtained:
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where c2 , 4a2b2=c21 and Pn.�/ are the Legendre polynomials. Substituting Equations (11) and
(12) into Equation (10) and after some algebra, we obtain the following expression for I1 in terms
of elementary functions:
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After a simple rescaling, a generalization of I2 is directly found in the table of integrals [10, eq.
6.624-5] in terms of the associate Legendre function. As in the case of I1, I2 reduces to a simple
expression in terms of Legendre polynomials:
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Integrals J1 and J2 can be studied within the theory of the incomplete cylindrical functions
developed by Agrest and Maksimov [15]. For convenience, we introduce the following incomplete
Lipschitz–Hankel integrals (ILHI) of the kth order first-kind modified Bessel functions Ik:
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where ˛ 2 R, r , k 2 N; ˛ > 1 and x 2 Œ0,1/. Integrals of type ILHI play a central role in the the-
ory developed in [15], and recently, some new results have appeared in the literature concerning the
particular family of integrals defined in Equation (15) (see [9]). To obtain exact closed-form expres-
sions for J1 and J2, we start connecting these integrals with the ILHI defined in Equation (15). On
the one hand, let us consider Lemma 1 of [9].
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where ˇ, a, b 2R, m,n 2N; ˇ, a, b > 0, n> 1, x 2 Œ0,1/ and ˛ D .a2C b2C 2ˇ/=2ab > 1.

After a simple rescaling and further simplifications, Lemma 1 is exploited to obtain the following
expression for J1:
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On the other hand, a simple rescaling allows us to express J2 as
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Finally, once J1 and J2 are expressed in terms of the ILHI defined in Equation (15), we apply
Proposition 1 of [9] to express such ILHI as a finite combination of Marcum Q, Bessel, and
elementary functions:
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where the set of coefficients ¹Al

r ,k.˛/,B
i ,j
r ,k.˛/º can be obtained recursively in a finite number of

steps using the algorithm given in [9, Appendix III].||

The final average BEP is obtained by substituting the derived expressions (13), (14), (17), and
(18) for I1, I2,J1, and J2, respectively, into Equation (7), which yields
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where the ILHI Ier ,k are represented in closed form by Equation (19) and the coefficients ˛L,m, c1
and c2 are as previously defined. Note that Equation (20) is an exact closed-form expression for the
average BEP in terms of Bessel, Marcum Q, and elementary functions, which is general and valid
for any modulation format whose conditional BEP can be expressed by Equation (5).

An interesting special case occurs when � D 1, which includes noncoherent detection of corre-
lated binary signaling and DQPSK (see Table I). As noted in [3, Chap. 9], comparing equations (40)
and (42) of [16], the following compact expression for the conditional BEP is obtained in this case
(�D 1):

Pb .x/D
1

2

�
1�Q1

�
b
p
x, a
p
x
	
CQ1

�
a
p
x, b
p
x
	�

. (21)

||MATLABTM and MATHEMATICATM programs to compute the set of coefficients ¹Al
r ,k.˛/,Bi ,jr ,k.˛/º, either numeri-

cally or symbolically, are found in the technical note posted in http://webpersonal.uma.es/de/jfparis/.
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Then, after considering Equation (21) and �D 1, the average BEP in Equation (7) can be rewritten
in terms of I1 and J1 as
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(22)

where I1 and J1 are given in Equations (13) and (17), respectively. In this case, the average BEP is
given in terms of two symmetric differences of I1 and J1. For brevity reasons, the final expression
is not explicitly written here.

3.2. Asymptotic analysis in the high signal-to-noise ratio regime

The derived average BEP expressions are given in terms of Bessel, Marcum Q, and elementary
functions. Given that the analytical properties of these special functions are well studied, obtaining
further insight from these expressions is straightforward, for example, upper and lower bounds or
asymptotic approximations [3, chap. 4].

Moreover, the derived closed-form expressions for integrals I1 and I2 allow us to obtain an
approximation of the average BEP in the high SNR regime. Let us consider N� !1 and, as a conse-
quence, �T !1. Thus, as the switching threshold increases, the involved incomplete integrals tend
to their corresponding complete version, that is, J1 ! I1 and J2 ! I2. Taking this into account,
the generic average BEP in Equation (7) can be approximated by
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where F� is the cumulative distribution function of the instantaneous SNR per diversity branch, as
previously defined. Then, I1 and I2 are replaced with Equations (13) and (14) into Equation (23),
and further algebraic manipulations are performed to obtain the following approximation:
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where for convenience we define c3 , 1=
p
1� c2 and c2 is as previously defined. Note that the pre-

vious expression, which is given in terms of elementary functions, provides a good approximation
of the average BEP in the high SNR regime, being asymptotically exact as N� !1.

4. NUMERICAL RESULTS

In this section, we show the usefulness of the obtained results in the analysis and design of multi-
branch switched diversity systems with differentially coherent detection over Nakagami-m fading
channels. Some numerical results are provided from the evaluation of the derived average BEP
expressions. Besides, Monte Carlo simulations are presented in order to validate our analytical
derivations.

Figure 1 depicts the average BEP as a function of the average SNR per branch N� for DQPSK
(see Table I), considering different values of the Nakagami parameter m and number of branches L.
The optimum switching threshold �?T that minimizes the average BEP is adopted for every N� . The
optimum value �?T has been obtained by applying standard numerical minimization methods to
expression (20). The plotted curves show that the system performance within the 10�6 to 10�3 range
is essentially determined by the product of m and L, which can be interpreted as a global diversity
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Figure 1. Average bit error probability versus average signal-to-noise ratio (SNR) per branch for differential
quadrature phase-shift keying using optimum switching thresholds.
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Figure 2. Average bit error probability for differential phase-shift keying (DPSK) and nonorthogonal
frequency-shift keying (FSK; �D 0.5) modulation schemes with LD 4 diversity branches.

order measure. Simulation results are also superimposed to the analytical curves, confirming the
validity of the derived expressions.

To illustrate the generality of the derived analytical results for different signaling formats (see
Table I), Figure 2 shows the average BEP for nonorthogonal FSK (�D 0.5), compared with the cor-
responding results for DPSK. As in Figure 1, optimum switching thresholds are assumed. Figure 3
shows the trade-off between the correlation (frequency separation) in nonorthogonal FSK and the
number of diversity branches for different values of the Nakagami-m parameter. It is observed that
the performance loss associated to a larger cross-correlation is higher as m increases.

Figure 4 shows the sensitivity of the average BEP for DQPSK to the selection of the switching
threshold �T . Let us define the relative error as � , �T =�

?
T . When � D 1, the optimum threshold

is always chosen, whereas � ¤ 1 represents a certain relative deviation from the optimum value.
The plotted curves show that multibranch switched diversity exhibits high sensitivity to a wrong
switching threshold when the channel presents high values of m, for example, when the radio chan-
nel has a strong line-of-sight component. Also, it is shown that the average BEP degradation due to
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Figure 3. Average bit error probability versus number of diversity branches (L) with nonorthogonal binary
frequency-shift keying signaling for different values of the cross-correlation (�) and the Nakagami-m

parameter.
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Figure 4. Average bit error probability versus the optimum threshold deviation for differential quadrature
phase-shift keying with LD 4.

the threshold deviation is greater as the average SNR increases. For an average SNR of 15 dB and
mD 4, the average BEP is degraded by one order of magnitude when � D 2 (3 dB).

Finally, in Figure 5 the asymptotic approximation of the average BEP for DQPSK in Equation (24)
is compared with the exact closed-form expression in Equation (20). Both expressions have been
numerically evaluated in the high SNR regime for several values of the number of branches L and
the Nakagami parameter. It is shown that Equation (24) fits reasonably well with the exact aver-
age BEP in Equation (20) for average SNR values higher than 20 dB. Also, it can be seen that the
approximation is asymptotically tighter as the average SNR increases.

5. CONCLUSIONS

In this paper, we have derived exact and closed-form expressions for the average BEP of noncoherent
and differentially coherent detection in multibranch switched diversity systems under Nakagami-m
fading. The derived expressions have led to easily computable results that are useful for the analysis
and design of switched diversity based systems.
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for differential quadrature phase-shift keying with optimum switching thresholds and several values of the

number of branches L and Nakagami parameter m.
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