Closed-form analysis of dual-branch
switched diversity with binary
nonorthogonal signalling

D. Morales-Jiménez and J.F. Paris

An exact closed-form analytical expression is derived for the average
bit error probability of dual-branch switched diversity over Rayleigh
fading. A practical scheme is considered employing binary nonortho-
gonal signalling with noncoherent detection. The analytical results
are useful to evaluate the performance—bandwidth trade-off in
systems that intentionally employ nonorthogonal signalling.

Introduction: Switched diversity has been thoroughly studied as an
attempt at simplifying practical systems exploiting diversity. The sim-
plest and best studied switched diversity system is the dual-branch
switch-and-stay combining (SSC) over independent and identically
distributed (i.i.d.) branches [1, Chap. 9]. Noncoherent detection of
binary signals is frequently adopted in practical SSC systems as one
of the least complex modulation schemes. In such a case, signals can
be chosen nonorthogonal at the transmitter in order to reduce bandwidth
utilisation, at the expense of certain performance degradation
[2, Chap. 5].

Considerable attention has been paid to the performance analysis of
SSC over i.i.d. fading channels [1, 3—5]. By following the moment gen-
erating function (MGF) approach, results in [1] and [3] for the average
bit error probability (BEP) are in the form of single finite integrals. In
[4], a new analysis is performed to give a closed-form BEP expression
for coherent detection. An exact formula for noncoherent detection
with orthogonal signalling is provided in [5]. However, to the best of
the authors’ knowledge, exact closed-form expressions for noncoherent
detection of correlated signals are not found in the literature.

In this Letter, a new closed-form BEP analysis is presented for non-
coherent detection of correlated binary signals with dual-branch
switched diversity over i.i.d. Rayleigh fading. The resultant average
BEP expression is in the form of Marcum Q and elementary functions,
thus avoiding the need for numerical integration.

Average bit error probability: Let us assume a dual-branch SSC system
under i.i.d. Rayleigh fading. The probability density function (pdf) of
the instantaneous signal-to-noise ratio (SNR) per symbol +ys at the
output of the combiner is [1, eqn. (9.275)]
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where 7y is the average SNR on each diversity branch and vy7 is the

switching threshold. Given the conditional BEP Py(x) = Pr{bit error|
vg = x} the average BEP is calculated by

Sy () = M

Py = L Py(x)fy () dx @

After considering [6, eqns. (40) and (42)], the conditional BEP for non-
coherent binary signalling given in [1, eqn. (8.70)] can be expressed in
terms of the symmetric difference of Marcum Q functions, i.e.

Py = 5 [1 ~ O(bE avi) + Q(avi. bvR)] ()
with a=(1—-1—=p)/2)Y* and b= (1+/1-p)/2)"* =

p/(2a), where p is the magnitude of the cross-correlation between the
two signals.

Substituting (1) and (3) into (2) and after some algebraic manipula-
tions the following expression for the average BEP is obtained:
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where U and V are integrals defined as
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What remains to complete the analysis is to show that U and /" may be
given in exact closed-form by a finite combination of Marcum Q and
elementary functions.

The complete integral U is crucial for performance analysis of non-
coherent modulations in fading channels. In [7], an exact closed-form
expression for U was derived in terms of Gauss hypergeometric
functions, which can be easily expressed in terms of Legendre poly-
nomials. Then, after some algebra the following symmetric difference
of U functions is obtained:
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where ¢ =1 +2/%.

On the other hand, the integral V" can be studied within the theory
of the incomplete cylindrical functions developed by Agrest and
Maksimov [8]. Generic forms of the incomplete integral 7 have been
recently investigated in [9]. After simple rescaling and further simpli-
fications, lemma 1 of [9] can be exploited to obtain the following
symmetric difference of V' functions:
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where [ is the first-kind modified Bessel function. The integral invol-
ving I in (7) is an incomplete Lipschitz-Hankel integral, which can
be expressed in terms of Marcum Q, Bessel and elementary functions
[9]. Hence, by taking into account lemma 3 of [9] and the connection
between Bessel and Marcum Q functions pointed out in [6], the follow-
ing compact expression is found for the integral in (7):
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where g(¥) = p/ («/Z/ c+ ./t — p? Then, after substituting (8) into

(7), the two symmetric differences in (6) and (7) can be replaced in (4) to
obtain the final average BEP expression:
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with f(y) = /1 — p?/4/c? — p?. Note that the previous expression is

given in closed-form in terms of Marcum Q and elementary functions.
Given that analytical properties of Marcum @ function are well-
studied, obtaining further insight from (9) is straightforward, e.g.
simple upper bounds or asymptotic approximations [1, Sect. 4.2].
Moreover, the presented analytical approach is directly applicable to
any modulation with conditional BEP in the form given in (3) (e.g.
differentially coherent modulation such as DQPSK).
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Numerical results: The average BEP expression in (9) has been
evaluated in order to show the performance—bandwidth trade-off for
correlated binary frequency shift keying (FSK) signals. The switching
threshold that minimises the average BEP has been obtained by means
of standard numerical minimisation techniques. Fig. 1 shows the
optimum switching threshold against SNR for different values of the
cross-correlation. By using the optimum switching threshold, average
BEP against average SNR is plotted in Fig. 2 for different values of
the cross-correlation parameter. In the same Figure, simulation results
are superimposed on the analytical curves.
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Fig. 1 Optimum switching threshold against average SNR for different
values of cross-correlation parameter
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Fig. 2 Average BEP against average SNR for different values of cross-
correlation parameter (optimum adaptive switching threshold is used)

Note that for two correlated FSK signals with p= 0.4, a 35%
reduction of frequency separation is achieved (see [2, eqn. (5.137)]),

with the corresponding bandwidth utilisation saving. In such a case, a
performance loss of only 1 dB is experienced with respect to the ortho-
gonal case (p = 0) for a typical 10 dB average SNR (see Fig. 2).

Conclusions: A simple and elegant closed-form expression for the
average BEP of noncoherent and nonorthogonal binary signalling with
switched diversity is derived in terms of the symmetric difference of
Marcum @ functions. This expression leads to easily computable
results, which are useful for the design of switched diversity based
systems.
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