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Outage Probability Analysis for
Nakagami-𝑞 (Hoyt) Fading Channels under Rayleigh Interference

José F. Paris and David Morales-Jiménez

Abstract—Exact closed-form expressions are obtained for the
outage probability of Nakagami-𝑞 (Hoyt) fading channels under
co-channel interference (CCI). The scenario considered in this
work assumes the joint presence of background white Gaussian
noise and independent Rayleigh interferers with arbitrary pow-
ers.

Index Terms—Outage probability, Nakagami-𝑞 (Hoyt) fading,
co-channel interference (CCI).

I. INTRODUCTION

OUTAGE probability is a key performance metric of
wireless communication systems under co-channel in-

terference (CCI). An excellent explanation of this topic
can be found in [1, chapter 10] and references therein. The
Nakagami-𝑞 distribution, also referred to as Hoyt distribution
[2], is commonly used to describe the short-term signal
variation of certain wireless communication systems subject
to fading [1]-[3]. Specifically, the Hoyt channel model has
been applied in satellite-based cellular communications to
characterize more severe fading conditions than those modeled
by Rayleigh [3]-[4]. Although considerable attention has been
paid to outage probability analysis, few published results
for Hoyt fading channels are found in the literature, mainly
due to reasons of mathematical tractability1. Recently, exact
closed-form results for the outage probability of interference-
free Hoyt fading channels were published in [5]. Moreover,
only a few works in the literature include background noise
in the outage probability analysis. The analysis in [6] in-
cludes background noise and assumes Nakagami-𝑛 (Rician) or
Nakagami-𝑚 fading for the desired signal and Rayleigh faded
interferers. Recently, closed-form expressions were provided
in [4] for the outage probability of Rayleigh fading under
mixed Rayleigh and Hoyt interference. Also, the same scenario
which is considered in this work, i.e., a Hoyt faded signal
with Rayleigh interferers, was analyzed in [4]. However, in
the latter case the outage probability was given in the form of
an infinite series expansion.

In this paper, closed-form expressions for the outage prob-
ability of Hoyt fading channels are derived, generalizing [5]
by assuming the joint presence of background noise and
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1In particular, even if the background noise is neglected, the general

approach adopted in [1, chapter 10] is not applicable since the Gaussian
characterization of the Hoyt distribution is not circularly symmetric.

independent Rayleigh interferers with arbitrary powers. These
results are obtained through an appropriate generalization of
the moment-generating function (MGF) of the Hoyt fading
distribution.

The remainder of this paper is organized as follows. The
general problem formulation is presented in Section II. The
generalization of the MGF is obtained in Section III and
the outage probability expressions are derived in Section IV.
Finally, some numerical results are given in Section V and
conclusions are presented in Section VI.

II. GENERAL PROBLEM FORMULATION

Let us assume the signal from the desired user at the
receive antenna to be affected by Hoyt fading, while co-
channel interference (CCI) signals are assumed to experience
independent Rayleigh fading. The power 𝑋 of the desired sig-
nal follows a Hoyt distribution with mean 𝑊𝑠 and parameter
𝑞. The probability density function (PDF) of 𝑋 is given by
[1, eq.(2.11)]

𝑓𝑋 (𝑥) =
(1 + 𝑞2)

2𝑞Ω𝑋
exp

(
− (1+𝑞2)2

4𝑞2
𝑥

Ω𝑋

)
𝐼0

(
(1−𝑞4)
4𝑞2

𝑥
Ω𝑋

)
,

(1)
where 𝐼0 is the zeroth order modified Bessel function of the
first kind, the parameter Ω𝑋 = 𝑊𝑠 is the mean of 𝑋 , and
𝑞 is the Nakagami-𝑞 fading parameter which ranges from 0
to 1. Both extremes of the range of 𝑞 are interpreted as a
limit. Let us divide the total number of interferers 𝐿 into 𝐽
groups, where every interferer in a group has the same mean
power 𝑊𝑖. Consider 𝑛𝑖 interferers in a given group with mean
power 𝑊𝑖. It is shown in [6] that the outage probability in this
scenario can be computed as

𝑃𝑜𝑢𝑡
.
= Pr

{
𝑋

𝑌+𝜎2 ≤ 𝜂
}
=

∫ 𝜂𝜎2

0

𝑓𝑋 (𝑥) 𝑑𝑥︸ ︷︷ ︸
𝑃★
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+

𝐽∑
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𝑛𝑖∑
𝑗=1

𝑛𝑖−𝑗∑
𝑘=0

𝑘∑
𝑙=0

𝐸𝑖,𝑗
𝑒𝜎

2/𝑊𝑖(−𝜎2)𝑘−𝑙

𝑙!(𝑘 − 𝑙)!𝑊 𝑘
𝑖 𝜂

𝑙

∫ ∞

𝜂𝜎2

𝑥𝑙 e
− 𝑥

𝜂𝑊𝑖 𝑓𝑋 (𝑥) 𝑑𝑥,

(2)

where 𝑌 is the power of the interfering signals, 𝜂 is a
predefined threshold, 𝜎2 is the background noise power, 𝐸𝑖,𝑗

are certain constants defined in [6, eq. 6], and 𝑓𝑋 is the PDF
of the Hoyt fading distribution given in (1).

The first term in (2) represents the outage probability in the
interference-free case. Recently, a simple exact closed-form
expression was obtained for this term2 [5]

𝑃 ★
𝑜𝑢𝑡 =𝑄

(
𝑢

√
𝜂𝜎2

𝑊𝑠
, 𝑣

√
𝜂𝜎2

𝑊𝑠

)
−𝑄

(
𝑣

√
𝜂𝜎2

𝑊𝑠
, 𝑢

√
𝜂𝜎2

𝑊𝑠

)
, (3)
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where 𝑢 (𝑞)
.
=

√
1−𝑞4

2𝑞

√
1+𝑞
1−𝑞 , 𝑣 (𝑞)

.
=

√
1−𝑞4

2𝑞

√
1−𝑞
1+𝑞 and 𝑄 is

the Marcum Q function.
The second term in (2) represents the impact of the in-

terference on the outage probability. Since this term consists
of a finite number of generalized MGFs, the next section is
devoted to computing this statistical function for the Hoyt
fading distribution.

III. INCOMPLETE GENERALIZED MGF OF THE HOYT

FADING DISTRIBUTION

Let us focus on the following generalization of the MGF.
Definition 1 (Incomplete Generalized MGF): Let us con-

sider a continuous random variable (RV) 𝑋 with PDF 𝑓𝑋(𝑥).
The Incomplete Generalized MGF (IG-MGF) of𝑋 , if it exists,
is defined as

𝒢𝑋(𝑛, 𝑠; 𝜁) =

∫ ∞

𝜁

𝑥𝑛 e𝑠𝑥 𝑓𝑋 (𝑥) 𝑑𝑥,

where3 𝑠 ∈ ℂ, 𝑛 is a nonnegative integer and 𝜁 ∈ ℝ with
𝜁 ≥ 0.

Note that Definition 1 includes, as particular cases, sev-
eral important statistical functions associated to the RV
X: 𝒢𝑋(0, 0; 𝜁) is the complementary cumulative distribution
function (CDF); 𝒢𝑋(0, 𝑠; 0) is the MGF; 𝒢𝑋(0, 𝑠; 𝜁) is the
marginal MGF and 𝒢𝑋(𝑛, 𝑠; 0) is the generalized MGF. To
facilitate the analysis the following concepts are introduced.

Definition 2 (Complementary IG-MGF): The complemen-
tary IG-MGF 𝒢𝑋(𝑛, 𝑠; 𝜁) of a RV 𝑋 is (if it exists)
𝒢𝑋(𝑛, 𝑠; 𝜁) =

∫ 𝜁

0
𝑥𝑛 e𝑠𝑥 𝑓𝑋 (𝑥) 𝑑𝑥.

Definition 3 (Normalized Hoyt Distributed RV): For a
given Hoyt distributed RV 𝑋 with mean E[𝑋 ] = Ω𝑋 and
Hoyt parameter 𝑞, we define a ’normalized’ Hoyt RV as
⟨𝑋⟩ .= 1−𝑞4

4𝑞2Ω𝑋
𝑋 .

Some useful properties of the Hoyt distribution are summa-
rized in the following Lemma.

Lemma 1: Let us consider a Hoyt distributed RV 𝑋 with
mean E[𝑋 ] = Ω𝑋 and Hoyt parameter 𝑞. Sufficient condi-
tions for the existence of the statistical functions 𝒢𝑋(𝑛, 𝑠; 𝜁),
𝒢𝑋(𝑛, 𝑠; 𝜁), 𝒢⟨X⟩(𝑛, 𝑠; 𝜁) and 𝒢⟨X⟩(𝑛, 𝑠; 𝜁) are: 𝑛 ≥ 0 and

ℜ{𝑠} < 2𝑞2

1−𝑞2 . In such a case, the following equalities hold⎧⎨
⎩

𝒢𝑋(𝑛, 𝑠; 𝜁) =

(
4𝑞2Ω𝑋

1− 𝑞4
)𝑛

𝒢⟨𝑋⟩
(
𝑛, 4𝑠𝑞

2Ω𝑋

1−𝑞4 ; 1−𝑞4

4𝑞2Ω𝑋
𝜁
)

𝒢⟨X⟩(𝑛, 𝑠; 𝜁) + 𝒢⟨X⟩(𝑛, 𝑠; 𝜁) =
2𝑞(𝑛!)

1− 𝑞2 �̄� (𝑠)𝑛+1 𝑃𝑛 (𝛼 (𝑠) �̄� (𝑠))

,

(4)
where 𝛼 (𝑠)

.
= 1+𝑞2

1−𝑞2 − 𝑠, �̄� (𝑠)
.
= 1√

𝛼(𝑠)2−1
and 𝑃𝑛 is the

Legendre polynomial of degree 𝑛.
Proof: See Appendix A.

Now, we express 𝒢⟨𝑋⟩(𝑛, 𝑠; 𝜁) in closed-form by the fol-
lowing Proposition.

Proposition 1: Let us consider a Hoyt distributed RV 𝑋
with E[𝑋 ] = Ω𝑋 and Hoyt parameter 𝑞. Then, if 𝑛 ≥ 0 and

2A minor error in [5, eq. 9] is corrected here.
3The variable 𝑠 is only evaluated along the real line, however the complex

domain is assumed here, in accordance with the usual definition of the MGF
in the context of communications theory [1].

ℜ{𝑠} < 2𝑞2

1−𝑞2 , the complementary IG-MGF of ⟨𝑋⟩ is given
by

𝒢⟨𝑋⟩(𝑛, 𝑠; 𝜁) =
2𝑞

1− 𝑞2
{
𝐴𝑛 (𝑠)

+ 𝐵𝑛 (𝑠) 𝑄

( √
𝜁√

𝛼(𝑠)+�̄�(𝑠)−1
,
√
𝜁
√

𝛼(𝑠)+�̄�(𝑠)−1

)

+ e−𝛼(𝑠)𝜁
𝑛∑

ℓ=0

[
𝐶ℓ

𝑛 (𝑠) 𝐼0(𝜁) +𝐷
ℓ
𝑛 (𝑠) 𝐼1(𝜁)

]
𝜁ℓ

}
,

(5)

where 𝑄 is the Marcum Q function, 𝐼1 is the first order
modified Bessel function and, 𝐴𝑛(𝑠), 𝐵𝑛(𝑠), 𝐶ℓ

𝑛(𝑠) and
𝐷ℓ

𝑛(𝑠) are obtained recursively in a finite number of steps
as follows:

𝑛 = 0

⎧⎨
⎩
𝐴0 (𝑠) = �̄�,

𝐵0 (𝑠) = −2�̄�,

𝐶0
0 (𝑠) = �̄�,

𝐷0
0 (𝑠) = 0,

𝑛 = 1

⎧⎨
⎩

𝐴1 (𝑠) = 𝛼�̄�3,

𝐵1 (𝑠) = −2𝛼�̄�3,

𝐶0
1 (𝑠) = 𝛼�̄�3,

𝐶1
1 (𝑠) = −𝛼�̄�2,

𝐷0
1 (𝑠) = 0,

𝐷1
1 (𝑠) = −�̄�2,

𝑛 ⩾ 2

𝐴𝑛 (𝑠) = (2𝑛− 1)𝛼�̄�2𝐴𝑛−1 − (𝑛− 1)2�̄�2𝐴𝑛−2,

𝐵𝑛 (𝑠) = (2𝑛− 1)𝛼�̄�2𝐵𝑛−1 − (𝑛− 1)2�̄�2𝐵𝑛−2,

𝐶ℓ
𝑛 (𝑠) =

⎧⎨
⎩

(2𝑛− 1)𝛼�̄�2𝐶ℓ
𝑛−1 − (𝑛− 1)2�̄�2𝐶ℓ

𝑛−2

for 0 ⩽ ℓ = 𝑛− 2,

(2𝑛− 1)𝛼�̄�2𝐶𝑛−1
𝑛−1 + (𝑛− 1)�̄�2

for ℓ = 𝑛− 1,

−𝛼�̄�2 for ℓ = 𝑛,

𝐷ℓ
𝑛 (𝑠) =

⎧⎨
⎩

(2𝑛− 1)𝛼�̄�2𝐷ℓ
𝑛−1 − (𝑛− 1)2�̄�2𝐷ℓ

𝑛−2

for 0 ⩽ ℓ = 𝑛− 2,

(2𝑛− 1)𝛼�̄�2𝐷𝑛−1
𝑛−1 for ℓ = 𝑛− 1,

−�̄�2 for ℓ = 𝑛.
(6)

The functions 𝛼(𝑠) and �̄�(𝑠) are defined as in Lemma 1.
Proof: See Appendix B.

Finally, by taking Proposition 1 and Lemma 1 into account,
we obtain a closed-form expression for 𝒢𝑋(𝑛, 𝑠; 𝜁).

Corollary 1: Under the conditions of Proposition 1, the
IG-MGF of the Hoyt distributed RV 𝑋 is given by

𝒢𝑋(𝑛, 𝑠; 𝜁) =

(
4𝑞2Ω𝑋

1− 𝑞4
)𝑛 {

2𝑞(𝑛!)

1− 𝑞2 �̄�
(

4𝑠𝑞2Ω𝑋

1−𝑞4

)𝑛+1

𝑃𝑛

(
𝛼
(

4𝑠𝑞2Ω𝑋

1−𝑞4

)
�̄�
(

4𝑠𝑞2Ω𝑋

1−𝑞4

))
− 𝒢⟨𝑋⟩

(
𝑛, 4𝑠𝑞

2Ω𝑋

1−𝑞4 ; 1−𝑞4

4𝑞2Ω𝑋
𝜁
) }

,

(7)

where 𝒢⟨𝑋⟩(𝑛, 𝑠; 𝜁) is given in (5).

IV. OUTAGE PROBABILITY RESULTS

The mathematical tools provided in the previous section are
now used to obtain exact closed-form and easily computable
expressions for the outage probability in Hoyt fading channels
under Rayleigh interference. To the best of the authors’
knowledge, the expressions derived below are novel.
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A. Arbitrary number of interfering signals

The general case assumes an arbitrary number of interferers
𝐿. Note that the integrals in the second term of (2) can be
easily identified with the IG-MGF as∫ ∞

𝜂𝜎2

𝑥𝑙 e
− 𝑥

𝜂𝑊𝑖 𝑓𝑋 (𝑥) 𝑑𝑥 = 𝒢𝑋

(
𝑙,− 1

𝜂𝑊𝑖
; 𝜂𝜎2

)
.

Then, the final outage probability expression is obtained by
substituting (3) into (2) and replacing the previous integral
with the IG-MGF as

𝑃𝑜𝑢𝑡 = 𝑄

(
𝑢

√
𝜂𝜎2

𝑊𝑠
, 𝑣

√
𝜂𝜎2

𝑊𝑠

)
−𝑄

(
𝑣

√
𝜂𝜎2

𝑊𝑠
, 𝑢

√
𝜂𝜎2

𝑊𝑠

)

+

𝐽∑
𝑖=1

𝑛𝑖∑
𝑗=1

𝑛𝑖−𝑗∑
𝑘=0

𝑘∑
𝑙=0

𝐸𝑖,𝑗
𝑒𝜎

2/𝑊𝑖(−𝜎2)𝑘−𝑙

𝑙!(𝑘 − 𝑙)!𝑊 𝑘
𝑖 𝜂

𝑙
𝒢𝑋

(
𝑙,

−1

𝜂𝑊𝑖
; 𝜂𝜎2

)
,

(8)

where the coefficients 𝐸𝑖,𝑗 are given in [6, eq. 6] and the
IG-MGF 𝒢𝑋 (⋅, ⋅, ⋅) is directly obtained from Corollary 1. Note
that the outage probability in (8) is expressed in terms of
a finite combination of first order Marcum Q, Bessel, and
elementary functions.

B. One dominant interfering signal

This particular scenario assumes one dominant interferer
with mean power𝑊1, either neglecting the remainder 𝐿−1 of
the interferers or including them in the analysis as background
Gaussian noise. In this case, the outage probability expression
can be significantly simplified. By setting 𝐽 = 𝑛1 = 1 in (2)
and considering the expression for 𝒢𝑋

(
0,− 1

𝜂𝑊1
; 𝜂𝜎2

)
, which

follows from Corollary 1, the outage probability is obtained
as

𝑃𝑜𝑢𝑡 = 𝑃 ★
𝑜𝑢𝑡 +

2𝑞𝑒𝜎
2/𝑊1

1− 𝑞2
{
−�̄� (𝑠1) e

−𝛼(𝑠1)𝜁0 𝐼0(𝜁0)

+2�̄� (𝑠1) 𝑄

( √
𝜁0√

𝛼(𝑠1)+�̄�(𝑠1)−1
,
√
𝜁0
√

𝛼(𝑠1)+�̄�(𝑠1)−1

)}
,

(9)

where 𝑠1
.
= − 𝑊𝑠

𝜂𝑊1

4𝑞2

1−𝑞4 , 𝜁0
.
= 1−𝑞4

4𝑞2
𝜂𝜎2

𝑊𝑠
and 𝛼 (⋅), �̄� (⋅) are

defined as in previous sections.
In order to obtain further insight from the outage proba-

bility expression in (9), the following well-known metrics are
defined:⎧⎨

⎩
SNR

.
=
𝑊𝑠

𝜂𝜎2

SIR
.
=

𝑊𝑠

𝜂𝑊1

⎧⎨
⎩

SINR
.
=

𝑊𝑠

𝜂𝑊1 + 𝜂𝜎2

INR
.
=
𝜂𝑊1

𝜂𝜎2

, (10)

where SNR and SIR are the signal-to-noise and
signal-to-interference ratios, while SINR and INR are
the signal-to-interference-plus-noise and interference-to-noise
ratios, respectively. Note that these metrics are defined as
normalized and averaged magnitudes. The first pair of metrics
can be expressed as a function of the second pair as{

SNR = (1 + INR)SINR
SIR =

(
1 + INR−1

)
SINR

. (11)

Then, after substituting (3) into (9) and considering [1, eq.
9.107] as well as previous definitions, the outage probability
can be written in closed-form as

𝑃𝑜𝑢𝑡 = 𝑄

(
𝑢√
SNR

,
𝑣√
SNR

)
−𝑄

(
𝑣√
SNR

,
𝑢√
SNR

)

+exp

(
SIR

SNR

)(
𝑢2 − 𝑣2
2𝑢𝑣

)
�̄�

(−SIR

𝑢𝑣

)
[
1−𝑄

(
ℎ(SIR)√

SNR
,
𝑓(SIR)√

SNR

)
+𝑄

(
𝑓(SIR)√

SNR
,
ℎ(SIR)√

SNR

)]
,

(12)

where⎧⎨
⎩
ℎ(SIR)

.
=

√
𝑢𝑣

√
𝛼

(−SIR

𝑢𝑣

)
+ �̄�

(−SIR

𝑢𝑣

)−1

𝑓(SIR)
.
=

𝑢𝑣

ℎ(SIR)

,

and 𝛼(⋅), �̄�(⋅), 𝑢 and 𝑣 are as previously defined. Note that
(12) is expressed in terms of the well-known SIR and SNR
metrics. Besides, this expression involves only elementary and
Marcum Q functions. Given that the analytical properties of
the Marcum Q function are well-studied, obtaining further
insight from (12) is straightforward, e.g. upper bounds or
asymptotic approximations [1, chapter 4]. As an example, the
derivative of the Marcum Q function in [12, eq. 2] is exploited
here to obtain a second order Taylor approximation of Q as
follows

𝑄
(
𝑎
√
𝑡, 𝑏

√
𝑡
)
≈ 1− 𝑡 ⋅ 𝑏

2

2
+ 𝑡2 ⋅ 1

2

(
𝑎2𝑏2

2
+
𝑏4

4

)
. (13)

Hence, after considering (13) with 𝑡
.
= 1/SNR and 𝑡 → 0 ,

the following approximation can be found

𝑃𝑜𝑢𝑡 ≈ 𝑢2 − 𝑣2
2 ⋅ SNR

+
𝑣4 − 𝑢4
8 ⋅ SNR2 + exp

(
1

INR

)(
𝑢2 − 𝑣2
2𝑢𝑣

)

�̄�

(−SIR

𝑢𝑣

)[
1 +

𝑓2 − ℎ2
2 ⋅ SNR

+
ℎ4 − 𝑓4
8 ⋅ SNR2

]
.

(14)
Note that the previous expression provides a good approx-

imation of the outage probability in the high SNR regime,
being asymptotically tight as SNR → ∞. For a given value
of SINR, the tradeoff between interference and noise is
represented by INR. When interference dominates over noise,
i.e. INR → ∞, then SNR → ∞. Therefore, for a given
SINR, the approximation in (14) fits well with the exact outage
probability in the high INR regime.

On the other hand, when noise dominates over interference,
i.e., INR → 0, then SNR → SINR and SIR → ∞. In this
case the outage probability can be approximated by (3), which
corresponds to the interference-free case.

V. NUMERICAL RESULTS

Fig. 1 and Fig. 2 show some results from the general
expression (8). Fig. 1 represents the outage probability related
to the normalized average SINR expressed in decibels

10 log10

(
𝑊𝑠

𝜂
∑
𝑊𝑖 + 𝜂𝜎2

)
,

for several values of the Hoyt parameter 𝑞. In this particular
example three interferers are considered with 𝑊1 = 1/4 and
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Fig. 1. Outage probability versus normalized average SINR. Three interferers
are considered with 𝑊1 = 1/4, 𝑊2 = 𝑊3 = 1/8, and background noise
power 𝜎2 = 1/10.

𝑊2 =𝑊3 = 1/8, while the background noise power is 𝜎2 =
1/10. In Fig. 2 the outage probability versus the number of
interferers is plotted for a scenario in which 𝑊𝑠/𝜂 = 100,
𝜎2 = 1/200 and where 𝑊1 = 1/100 is the same power for
all the interferers. Simulation results are superimposed in both
figures onto the results obtained from (8).

In Fig. 3 some numerical results for the one dominant
interferer case are plotted for 𝑞 = 1/2. The outage probability
in (12) is represented as a function of SINR for different values
of INR. Also, the approximated values from expression (14)
are superimposed in the same figure for the medium and high
INR values (i.e. 5 and 15 dB), whereas the interference-free
expression in (3) is represented as an approximation for the
low INR regime (i.e. -5 dB). On the one hand, this figure
shows that (14) fits well with the exact expression (12) in
the medium-high INR regime. Besides, it is observed that the
approximation is tighter as the INR increases. On the other
hand, it is shown that the interference-free approximation is
reasonably tight for low INR values. Finally, Fig. 3 shows that
noise has a slightly greater impact on outage probability than
interference for the low SINR regime.

VI. CONCLUSIONS

An incomplete generalized MGF of the Hoyt distribution
has been studied in this work. This statistical function yields
closed-form analytical and easily computable results which are
applicable in many realistic cases for Hoyt fading channels.
In particular, this mathematical tool is applied to analyze the
outage probability for Hoyt fading channels under the presence
of background noise and independent Rayleigh interferers with
arbitrary powers. Exact closed-form expressions for the outage
probability in this scenario have been obtained in the form
of finite combinations of Marcum Q, Bessel and elementary
functions.

APPENDIX A
PROOF OF LEMMA 1

Since the integrands involving 𝒢𝑋(𝑛, 𝑠; 𝜁) and 𝒢⟨X⟩(𝑛, 𝑠; 𝜁)
are bounded and continuous for 𝑛 ≥ 0, both exist under this
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Fig. 2. Outage probability versus number of interferers for an scenario with
𝑊𝑠/𝜂 = 100, 𝜎2 = 1/200 and same power 𝑊1 = 1/100 for all the
interferers.
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Interference-free approx. in (3)

Fig. 3. Outage probability versus normalized average SINR for the one
dominant interferer case with 𝑞 = 1/2. This plot shows that (14) is a good
approximation to (12) in the medium-high INR regime, whereas (3) can be
used as an approximation for low INR values.

assumption. Also, 𝒢𝑋(𝑛, 𝑠; 𝜁) exists if 𝒢⟨X⟩(𝑛, 𝑠; 𝜁) does and,
considering [7, eq. 6.624-5], this occurs when 𝑛 ≥ 0 and
ℜ{𝑠} < 2𝑞2

1−𝑞2 . The first equality in (4) is obtained by the

change of variable ⟨𝑋⟩ = 1−𝑞4

4𝑞2Ω𝑋
𝑋 and the second equality is

straightforward by [7, eq. 6.624-5] after some simple algebraic
manipulations.

APPENDIX B
PROOF OF PROPOSITION 1

The result in this proposition can be obtained by simplifying
the general equations derived in [8]. Alternatively, a direct
proof is carried out by induction over 𝑛 whose key steps are
as follows. For 𝑛 = 1 the identity [9, eq. 5.7] obtained by
Agrest and Maksimov is used. The case 𝑛 = 2 is proved
by considering a straightforward modification of the Sonine
identity [10, pp. 132] for 𝐼𝜈(𝑡), and then particularizing for
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𝜈 = 0 and 𝑓(𝑡) = exp(−𝛼𝑡). Finally, the general case 𝑛 =
𝑘 ≥ 2 follows from Luke’s recursive formulas [11, pp. 120,
eq. (5)].
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