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On the Diagonal Distribution of a
Complex Wishart Matrix and its

Application to the Analysis of MIMO Systems
David Morales-Jiménez, José F. Paris, J. T. Entrambasaguas, and Kai-Kit Wong

Abstract—The statistical properties of Wishart matrices
have been extensively used to analyze the performance of
multiple-input multiple-output (MIMO) systems. In particular,
the signal-to-noise ratio (SNR) output statistics of several MIMO
systems depends on the diagonal distribution of a complex
Wishart matrix. In this paper, we derive the joint density of the
diagonal elements of a complex Wishart matrix, which follows a
multivariate chi-square distribution. The density expression is in
the form of an infinite series representation which converges
rapidly and is easy to compute. This expression is used to
obtain the distribution of the maximum of the diagonal elements,
which allows analyzing the performance of two different MIMO
systems under practical conditions. First, our statistical results
are applied to the outage probability characterization of MIMO
systems with receive antenna selection in spatially correlated
Rayleigh fading. Then, the same results are used to analyze
the outage probability of transmit beamforming systems under
limited-rate feedback.

Index Terms—Complex Wishart matrix, multivariate
chi-square distribution, receive antenna selection, spatial
correlation, transmit beamforming.

I. INTRODUCTION

MULTIPLE antenna systems have been used for a long
time to mitigate the effects of fading in wireless com-

munications. More recently, multiple-input multiple-output
(MIMO) systems have played an important role to satisfy the
increasing demand for higher capacity and coverage [1–3].
Such systems may combine the use of space-time block
codes (STBCs) at the transmitter [4] and receive diversity
techniques such as antenna selection [5], which reduces com-
plexity and the expensive RF chains at the receiver. When
channel state information (CSI) is available at the transmitter,
more sophisticated schemes can be employed to enhance the
performance. The MIMO maximal ratio combining (MRC)
system, also referred to as MIMO beamforming, relies on the
joint MRC weights at both the transmitter and the receiver
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sides [6–11]. However, the performance of such systems is
very often constrained by practical limitations as the antenna
correlation, which reduces spatial diversity, or the limited-
rate feedback, which has been dealt with codebook-based
beamforming approaches.

The statistical properties of Wishart matrices have been
widely used to analyze the performance of MIMO systems
[12–16]. Particularly, the diagonal entries of complex Wishart
matrices are employed for characterizing the signal-to-noise
ratio (SNR) statistics at the output of certain MIMO systems
under practical limitations. The distribution of the maximum
of the diagonal elements can be used to characterize the
output SNR of diversity receivers (MIMO with receive an-
tenna selection) under spatially correlated fading (see, e.g.,
[5, 17, 18]). Also, the use of the diagonal distribution of
complex Wishart matrices has been pointed out in [19] as an
approach to the performance analysis of beamforming systems
with limited feedback (codebook-based). The derivation of
tractable analytical expressions for the SNR statistics of such
systems is very important in order to evaluate performance
measures such as the outage probability, bit error rate (BER),
or system capacity. The reasons above motivate us to focus on
the diagonal distribution of a complex Wishart matrix, which
is a particular multivariate chi-square distribution derived from
complex Gaussian variables.

In the area of multivariate analysis, there is a rich body
of works considering the joint distribution of the diagonal
elements of real Wishart matrices; equivalently, multivariate
chi-square distributions derived from real Gaussian random
variables [20–24]. Whereas the characteristic function (CF) is
well known [22], the joint probability density function (PDF)
is rather more complicated. Different approaches to the joint
PDF have been proposed in the literature. An infinite series
expansion for the density in terms of Laguerre polynomials
was first given in [22]. Following the same approach, later
work by Royen [23] provided new Laguerre expansions with
improved convergence. In [24], Miller et al. derived expan-
sions for the PDF in terms of Bessel functions for the bivariate
and trivariate cases. However, the case of underlying complex
Gaussian random variables, i.e., complex Wishart matrices,
has not been sufficiently investigated. Only very recently,
Hagedorn et al. [25] have derived corresponding expansions
for the trivariate case, extending previous results in [24] to
the complex case. To the best of the authors’ knowledge,
the case of 𝑘-variate chi-square (𝑘 > 3) from a complex
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Wishart matrix with arbitrary correlation is not available in
the literature. Moreover, the expansions in [25] for 𝑘 = 3
are given via a product of Bessel functions, which does not
lend itself into manipulations in the context of performance
analysis of MIMO systems.

In the communications theory context, the available statis-
tical results on the multivariate chi-square distribution have
been applied to the performance analysis of MIMO systems
[5, 17–19]. However, the analysis is often limited due to the
lack of results on the diagonal distribution of complex Wishart
matrices. Moreover, analytical closed-form expressions (e.g.,
BER) are rarely provided due to the awkward form of the joint
PDF. In [18], the derived BER expressions for multi-branch
selection combining (SC) over spatially correlated fading are
in the form of a multiple integral involving the joint CF. Also,
BER results in [19] for codebook-based transmit beamforming
are again given in a multiple integral form. In some other
works, the analysis is carried out under certain assumptions
such as a real channel correlation, which leads to the statistics
of a real Wishart matrix. In [17], closed-form BER results
are provided for dual-branch selection diversity assuming
real correlation among branches. Also, the real exponential
correlation model is assumed in [5] for more than 3 antennas
to analyze the performance of MIMO systems with SC.

In this paper, we derive a new expression for the joint
cumulative distribution function (CDF) and joint PDF of
a 𝑘-variate chi-square distribution from a complex Wishart
matrix with arbitrary correlation. The main contributions of
this paper can be summarized as follows:

∙ An infinite series representation is given for the joint CDF
and PDF of the multivariate chi-square distribution from a
complex Wishart matrix, based on previous results for the
real case in [23]. These expressions are straightforward
for numerical work and the expansions converge rapidly.
Further performance analysis of MIMO systems such as
exact BER analysis is made possible due to the series
expansions in terms of Laguerre polynomials.

∙ The derived expression for the joint CDF is used to
obtain a new series expansion for the distribution of the
maximum of 𝑘 correlated chi-square random variables.

∙ Although seemingly complex, the computation of
this series is mathematically tractable. An efficient
MATHEMATICATM algorithm is provided for rapid com-
putation of the coefficients.

∙ The newly derived series representation is applied to the
analysis of MIMO communication systems under practi-
cal conditions. First, our statistical results are applied to
the outage probability analysis of MIMO systems with
SC in arbitrarily correlated Rayleigh fading channels.
This analysis extends the results in [5] to any number of
antennas with arbitrary correlation. Moreover, our anal-
ysis is applicable to transmit antenna selection systems,
which are especially interesting in the uplink direction
in order to reduce the number of RF chains at the
terminal side. Our results are in the form of a single series
expansion in terms of the Laguerre polynomials, which
facilitates the computation and makes further closed-form
analysis (e.g. BER analysis) possible. Finally, the same
statistical results are applied to obtain a new expression

for the outage probability of codebook-based transmit
beamforming systems with MRC at the receiver side.

The rest of this paper is organized as follows. The joint CDF
and PDF of the diagonal elements of a complex Wishart matrix
are derived in Section II. Based on the results, the distribution
of the maximum of the diagonal elements is discussed in
Section III. Then, these statistical results are applied to the per-
formance analysis of MIMO systems with SC under arbitrarily
correlated fading and then with codebook-based beamforming
in Section IV. Section V provides some numerical results and
we conclude the paper in Section VI.

Throughout the paper, the following vector and matrix no-
tations are used: bold lower-case for vectors, bold upper-case
for matrices, superscripts 𝑇 and 𝐻 for the transpose and
the Hermitian transpose, respectively, ∥⋅∥ for the Euclidean
vector norm, ∣⋅∣ for the matrix determinant, diag(⋅) for the
diagonal elements of a matrix, and Diag (𝑎1, . . . , 𝑎𝑘) for the
diagonal matrix with diagonal elements (𝑎1, . . . , 𝑎𝑘). Also,
we use Re {⋅} and E [⋅] for the real part and the expectation
operators, respectively.

II. THE DIAGONAL DISTRIBUTION OF A COMPLEX

WISHART MATRIX

A. Preliminaries

Let X𝑗 = [𝑋1,𝑗 , 𝑋2,𝑗 , . . . , 𝑋𝑘,𝑗 ]
𝑇 be the 𝑗-th sample

of a 𝑘-dimensional zero-mean complex Gaussian process
(𝑗 = 1, 2, . . . , 𝑝), where {X𝑗} are mutually independent
and identically distributed (i.i.d.). The covariance matrix for
each Gaussian random vector is R, i.e., X𝑗 ∼ 𝒞𝒩 (0,R).
Then, the matrix S =

∑𝑝
𝑗=1 X𝑗X

𝐻
𝑗 has a complex Wishart

distribution denoted by 𝒞𝒲𝑘(𝑝,R), and the diagonal elements
of S, defined by

diag(S) = (𝑌1, 𝑌2, . . . , 𝑌𝑘) =⎛
⎝ 𝑝∑

𝑗=1

∣𝑋1,𝑗 ∣2,
𝑝∑

𝑗=1

∣𝑋2,𝑗 ∣2, . . . ,
𝑝∑

𝑗=1

∣𝑋𝑘,𝑗 ∣2
⎞
⎠ ,

(1)
are chi-square distributed with 2𝑝 degrees of freedom, i.e.,
𝑌𝑖 ∼ 𝜒2(0, 2𝑝) having PDF

𝑓𝑌𝑖(𝑦) =
1

2𝑝Γ(𝑝)
𝑦𝑝−1𝑒−

𝑦
2 , (𝑖 = 1, 2, . . . , 𝑘). (2)

Note that this is just a scaled version of the gamma distri-
bution, 𝑓𝑌𝑖(𝑦) =

1
2𝑔𝑝

(𝑦/2), with the gamma density defined
as

𝑔𝛼(𝑥) =
𝑥𝛼−1𝑒−𝑥

Γ(𝛼)
. (3)

The joint distribution of (𝑌1, 𝑌2, . . . , 𝑌𝑘), i.e., the diagonal
distribution of the complex Wishart matrix S, is a 𝑘-variate
central chi-square distribution with correlation structure in-
duced by R. The rest of this section is devoted to the
statistical analysis of this distribution. Specifically, exact infi-
nite series expansions are provided for both the joint CDF
and joint PDF denoted by 𝐹𝑌1,𝑌2,...,𝑌𝑘

(𝑦1, 𝑦2, . . . , 𝑦𝑘) and
𝑓𝑌1,𝑌2,...,𝑌𝑘

(𝑦1, 𝑦2, . . . , 𝑦𝑘), respectively.
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B. Joint CDF

Our objective is to find a tractable and easily computable
expansion for the CDF by following a similar approach to
that in [23], where results are provided for the real case. In
the complex case, the correlation structure of the underlying
Gaussian random variables is different, leading to a slightly
different CF with a complex correlation matrix. In the exten-
sion to the complex case, we basically apply the approach in
[23] to the CF, and then the binomial expansion and Fourier
inversion are used to obtain the series. As a different CF with
a complex correlation matrix is involved, the validity of the
derivations in [23] has been revised and carefully checked.
Then, our analysis diverges from that in [23] by using a more
convenient representation and rearranging the series when it
comes to the distribution of the maximum of the diagonal
elements (see section III).

The starting point is the CF for the diagonal distribution of
a real Wishart matrix, which is well known [22, 23]. After an
extension to the complex case, it is possible to write the CF
of the diagonal elements of a complex Wishart as

Φ (𝑡1, . . . , 𝑡𝑘) = E
[
𝑒𝑖(𝑡1𝑌1+⋅⋅⋅+𝑡𝑘𝑌𝑘)

]
= ∣I− 𝑖RT∣−𝑝

, (4)

where I is the 𝑘-dimensional identity matrix, R = E
[
X𝑗X

𝐻
𝑗

]
is the covariance or also referred to as correlation matrix, and
T = Diag (𝑡1, . . . , 𝑡𝑘).

Using the approach in [23] to (4), we arrive at the following
representation of the CF:

Φ (𝑡1, . . . , 𝑡𝑘) = ∣I− (I−WRW)U∣−𝑝
𝑘∏

𝑗=1

(1− 𝑢𝑗)
𝑝
, (5)

where W = Diag (𝑤1, . . . , 𝑤𝑘), with 𝑤𝑗 any scale factors,
and U = Diag (𝑢1, . . . , 𝑢𝑘), with

𝑢𝑗 = 1−
(
1− 𝑖

𝑡𝑗
𝑤2
𝑗

)−1

. (6)

Note that the Fourier transform of 𝑤 ⋅ 𝑔(𝑛)𝑝+𝑛 (𝑤 ⋅ 𝑦𝑗), where

𝑔
(𝑛)
𝑝+𝑛 (𝑥) denotes the 𝑛-th derivative of the gamma density

𝑔𝑝+𝑛 (𝑥), is given by

𝑢𝑛𝑗 (1− 𝑢𝑗)
𝑝 , for Re

{
(1 − 𝑢𝑗)

1
2

}
> 0. (7)

For convenience, we define 𝑔
(−1)
𝑝 (𝑥) as the gamma CDF, i.e.,

𝑔(−1)
𝑝 (𝑥)

Δ
= 𝐺𝑝 (𝑥) =

𝛾 (𝑝, 𝑥)

Γ (𝑝)
= 1− 𝑒−𝑥

𝑝−1∑
𝑗=0

𝑥𝑗

𝑗!
. (8)

The CF in (5) can be expressed as an infinite series by
replacing ∣I− (I−WRW)U∣−𝑝 with its binomial expansion
and, then, the joint CDF is obtained by the Fourier inversion
of the series. Thus, after considering (7) as well as previous
definition in (8), the following expansion for the joint CDF is
obtained:

𝐹𝑌1,𝑌2,...,𝑌𝑘
(𝑦1, 𝑦2, . . . , 𝑦𝑘) =

∞∑
𝑛=0

∑
(𝑛=𝑛1+⋅⋅⋅+𝑛𝑘)

𝑐 (𝑛1, . . . , 𝑛𝑘)

𝑘∏
𝑗=1

𝑔
(𝑛𝑗−1)
𝑝+𝑛𝑗

(
𝑤2
𝑗 𝑦𝑗
)
,

(9)

where
∑

(𝑛=𝑛1+⋅⋅⋅+𝑛𝑘)
denotes the summation over all possi-

ble integer partitions satisfying 𝑛 = 𝑛1 + ⋅ ⋅ ⋅ + 𝑛𝑘, and the
coefficients 𝑐 (𝑛1, . . . , 𝑛𝑘) depend on 𝑝, the scale factors 𝑤𝑗 ,
and the complex correlation matrix R. The scale factors are
chosen to assure the convergence of (9), which is guaranteed
under the condition 1

∥I−WRW∥2 < 1, (10)

where ∥A∥2 denotes the spectral norm of A, i.e. the square
root of the maximum eigenvalue of A𝐻A.

Now, using the Rodrigues’ formula [26, Eq. (22.11.6)], we
can write

𝑔
(𝑛−1)
𝑝+𝑛 (𝑥) =

(𝑛− 1)!

(𝑝 + 𝑛− 1)!
𝑒−𝑥𝑥𝑝𝐿𝑝

𝑛−1 (𝑥) , (11)

where 𝐿𝑎
𝑛 (𝑥) is the 𝑛-th order generalized Laguerre polyno-

mial, given by

𝐿𝑎
𝑛 (𝑥) =

𝑛∑
𝑖=0

(−1)
𝑖

(
𝑛+ 𝑎
𝑛 − 𝑖

)
𝑥𝑖

𝑖!
. (12)

Thus, the joint CDF can be rewritten in terms of the
well-known Laguerre polynomials as

𝐹𝑌1,𝑌2,...,𝑌𝑘
(𝑦1, 𝑦2, . . . , 𝑦𝑘) =

∞∑
𝑛=0

∑
(𝑛=𝑛1+⋅⋅⋅+𝑛𝑘)

𝑐 (𝑛1, . . . , 𝑛𝑘)
𝑘∏

𝑗=1

Δ𝑝
𝑛𝑗

(
𝑤2
𝑗 𝑦𝑗
)
,

(13)

with

Δ𝑝
𝑛 (𝑥)

Δ
=

⎧⎨
⎩

𝐺𝑝 (𝑥) = 1− 𝑒−𝑥
𝑝−1∑
𝑗=0

𝑥𝑗

𝑗!
, 𝑛 = 0,

𝑔
(𝑛−1)
𝑝+𝑛 (𝑥) = (𝑛−1)!

(𝑝+𝑛−1)!
𝑒−𝑥𝑥𝑝𝐿𝑝

𝑛−1 (𝑥) , 𝑛 > 0.
(14)

What remains to complete the expansion of the joint CDF in
(13) is to find an easily computable expression for the coef-
ficients 𝑐 (𝑛1, . . . , 𝑛𝑘), which is addressed by the following
proposition.

Proposition 1: The coefficients 𝑐 (𝑛1, . . . , 𝑛𝑘) for the series
expansion in (13) can be obtained as the coefficients of the
𝑛-order homogeneous polynomial 𝜃𝑛 as

𝜃𝑛 (𝑢1, 𝑢2, . . . , 𝑢𝑘) =
∑

(𝑛=𝑛1+⋅⋅⋅+𝑛𝑘)

𝑐 (𝑛1, . . . , 𝑛𝑘)
𝑘∏

𝑗=1

𝑢
𝑛𝑗

𝑗

=
∑

(𝑛=ℓ1+2ℓ2+⋅⋅⋅+𝑘ℓ𝑘)

Γ (𝑝+ ℓ1 + ⋅ ⋅ ⋅+ ℓ𝑘)

Γ (𝑝)

𝑘∏
𝑗=1

(−𝐷𝑗)
ℓ𝑗

ℓ𝑗 !
,

(15)
where 𝐷𝑗 denotes the polynomial generated from the deter-
minants of the submatrices of A = I−WRW as

𝐷𝑗 = (−1)
𝑗
∑

size(𝒮)=𝑗

∣A𝒮 ∣
∏
𝑚∈𝒮

𝑢𝑚, (16)

with A𝒮 representing the submatrix of A with the rows and
columns specified by the non-empty subset 𝒮 ⊆ {1, 2, . . . , 𝑘},
and

∑
size(𝒮)=𝑗 denoting the summation computed over all

possible subsets 𝒮 whose size is 𝑗.
Proof: See Appendix A.

1The sufficient condition for convergence of the series follows from the bi-
nomial expansion of (5), and a proof can be obtained from [23, Theorem 2.1].
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It should be noted that all the coefficients in the series
for a given value of 𝑛 are obtained from the polynomial 𝜃𝑛,
which makes the computation very efficient. Also, it is likely
to find a great number of null coefficients, especially for a
large number of variables (𝑘). As a consequence, the terms in
the series to be computed are reduced to those appearing in the
polynomial 𝜃𝑛, which significantly decreases the computation
cost. Appendix B includes a MATHEMATICATM program with
an efficient algorithm to compute the polynomial 𝜃𝑛, where
the coefficients 𝑐 (𝑛1, . . . , 𝑛𝑘) can be easily extracted from.

C. Joint PDF

The joint PDF of the diagonal elements of a complex
Wishart matrix 𝑓𝑌1,𝑌2,...,𝑌𝑘

(𝑦1, 𝑦2, . . . , 𝑦𝑘) can be obtained by
differentiation of the CDF in (13), which allows us to write

𝑓𝑌1,𝑌2,...,𝑌𝑘
(𝑦1, 𝑦2, . . . , 𝑦𝑘) =

∞∑
𝑛=0

∑
(𝑛=𝑛1+⋅⋅⋅+𝑛𝑘)

𝑐 (𝑛1, . . . , 𝑛𝑘)

𝑘∏
𝑗=1

𝑑
[
Δ𝑝

𝑛𝑗

(
𝑤2
𝑗 𝑦𝑗
)]

𝑑𝑦𝑗
.

(17)

The derivative of the delta function, defined in (14), is given
by

𝑑Δ𝑝
𝑛 (𝑥)

𝑑𝑥
= 𝑔

(𝑛)
𝑝+𝑛 (𝑥) =

𝑛!

(𝑝+ 𝑛− 1)!
𝑒−𝑥𝑥𝑝−1𝐿𝑝−1

𝑛 (𝑥) .

(18)
Then, by substituting (18) into (17), the expansion for the joint
PDF is expressed as

𝑓𝑌1,𝑌2,...,𝑌𝑘
(𝑦1, 𝑦2, . . . , 𝑦𝑘) =

∞∑
𝑛=0

∑
(𝑛=𝑛1+⋅⋅⋅+𝑛𝑘)

𝑐 (𝑛1, . . . , 𝑛𝑘)

𝑘∏
𝑗=1

𝑤2
𝑗 𝑔

(𝑛𝑗)
𝑝+𝑛𝑗

(
𝑤2
𝑗𝑦𝑗
)
.

(19)

Note that the joint PDF is given in terms of the 𝑛-th derivative
of the gamma density, which in turn is directly related to the
generalized Laguerre polynomials, as shown in (18).

III. DISTRIBUTION OF THE MAXIMUM OF THE DIAGONAL

ELEMENTS OF A COMPLEX WISHART MATRIX

The diagonal of a complex Wishart matrix is a type of multi-
variate central chi-square distribution with a certain underlying
complex correlation matrix. The distribution of the maximum
of these correlated variables is of special interest within
the performance analysis of many communication systems
[5, 17–19, 27]. This section presents expressions for the CDF
and PDF of this distribution.

A. CDF and PDF

Let us consider 𝑍 to be the maximum of the
𝑘 correlated central chi-square random variables, i.e.,
𝑍 = max {𝑌1, 𝑌2, . . . , 𝑌𝑘}. On the one hand, the CDF of 𝑍
is given by

𝐹𝑍 (𝑧) = Pr {𝑍 ≤ 𝑧}
= Pr {𝑌1 ≤ 𝑧, 𝑌2 ≤ 𝑧, . . . , 𝑌𝑘 ≤ 𝑧}
= 𝐹𝑌1,𝑌2,...,𝑌𝑘

(𝑧, 𝑧, . . . , 𝑧) .

(20)

That is, the CDF of the maximum is obtained by setting the
argument of the joint CDF in (13) to (𝑧, 𝑧, . . . , 𝑧), which
yields

𝐹𝑍 (𝑧) =

∞∑
𝑛=0

∑
(𝑛=𝑛1+⋅⋅⋅+𝑛𝑘)

𝑐 (𝑛1, . . . , 𝑛𝑘)

𝑘∏
𝑗=1

Δ𝑝
𝑛𝑗

(
𝑤2
𝑗 𝑧
)
,

(21)
where Δ𝑝

𝑛 (𝑥) are as previously defined in (14), and
𝑐 (𝑛1, . . . , 𝑛𝑘) are obtained as in Proposition 1. On the other
hand, the PDF of 𝑍 can be derived by differentiation of (21),
thus giving

𝑓𝑍 (𝑧) =

∞∑
𝑛=0

∑
(𝑛=𝑛1+⋅⋅⋅+𝑛𝑘)

𝑐 (𝑛1, . . . , 𝑛𝑘)

𝑘∑
𝑗=1

𝑤2
𝑗 𝑔

(𝑛𝑗)
𝑝+𝑛𝑗

(
𝑤2
𝑗 𝑧
) ∏

𝑖∈{1,...,𝑘}
𝑖∕=𝑗

Δ𝑝
𝑛𝑖

(
𝑤2
𝑖 𝑧
)
,

(22)
with 𝑔

(𝑛)
𝑝+𝑛 (𝑥) as previously defined in (18).

B. Series rearrangement

The derived series expansions for both the CDF and PDF of
𝑍 can be rearranged under the assumption of having a single
scale factor 𝑤 = 𝑤1 = 𝑤2 = ⋅ ⋅ ⋅ = 𝑤𝑘. Let 𝑃 (𝑛) =

{
𝑃

(𝑛)
𝑖

}
,

for 𝑖 = 1, . . . , 𝑠𝑛, be the set of all integer partitions of 𝑛 into 𝑘
elements and 𝑠𝑛 its size. Then, there is one term (coefficient)
in the series for each ordered sequence (𝑛1, . . . , 𝑛𝑘) that
satisfies 𝑛 = 𝑛1+⋅ ⋅ ⋅+𝑛𝑘. Note that the sequence (𝑛1, . . . , 𝑛𝑘)

is just some permutation of 𝑃
(𝑛)
𝑖 =

{
𝑝
(𝑛)
𝑖,1 , . . . , 𝑝

(𝑛)
𝑖,𝑘

}
. Under

the single scale factor assumption, the CDF series becomes

𝐹𝑍 (𝑧) =

∞∑
𝑛=0

∑
(𝑛=𝑛1+⋅⋅⋅+𝑛𝑘)

𝑐 (𝑛1, . . . , 𝑛𝑘)

𝑘∏
𝑗=1

Δ𝑝
𝑛𝑗

(
𝑤2𝑧

)
,

(23)
where the dependence of the product with the ordered se-
quence (𝑛1, . . . , 𝑛𝑘) vanishes since all the delta functions have
the same argument. Now, the product in (23) depends only on
the scale factor 𝑤 and on the integer partition 𝑃

(𝑛)
𝑖 . Then, all

the terms corresponding to permutations of the same integer
partition can be grouped under a new term with coefficient
𝑐
(
𝑃

(𝑛)
𝑖

)
, thus yielding the rearranged series

𝐹𝑍 (𝑧) =

∞∑
𝑛=0

𝑠𝑛∑
𝑖=1

𝑐
(
𝑝
(𝑛)
𝑖,1 , . . . , 𝑝

(𝑛)
𝑖,𝑘

) 𝑘∏
𝑗=1

Δ𝑝

𝑝
(𝑛)
𝑖,𝑗

(
𝑤2𝑧

)
, (24)

where 𝑐
(
𝑝
(𝑛)
𝑖,1 , . . . , 𝑝

(𝑛)
𝑖,𝑘

)
=

∑
(𝑛1,...,𝑛𝑘)∈𝑃 (𝑛)∗

𝑖

𝑐 (𝑛1, . . . , 𝑛𝑘)

with 𝑃
(𝑛)∗
𝑖 being the set of all possible permutations of 𝑃

(𝑛)
𝑖 .

It is emphasized that, with this rearrangement, the number
of terms in the series for a given 𝑛 is reduced by the
number of all possible permutations of each integer partition
of 𝑛, which allows for an easy and rapid computation. In
Appendix B, a MATHEMATICATM program is provided to
efficiently compute 𝑐

(
𝑝
(𝑛)
𝑖,1 , . . . , 𝑝

(𝑛)
𝑖,𝑘

)
for 𝑖 = 1, . . . , 𝑠𝑛 and

𝑛 = 0, . . . , 𝑁𝑚𝑎𝑥, where 𝑁𝑚𝑎𝑥 is the truncation limit. As it
will be shown in the numerical section, the time to compute all
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the coefficients for a typical truncation limit 𝑁𝑚𝑎𝑥 = 8, which
gives an accurate CDF representation (4-figure accuracy), is
less than one second.

C. Special cases and approximations

1) The bivariate case (𝑘 = 2): The joint CDF in this case
is given by

𝐹𝑌1,𝑌2 (𝑦1, 𝑦2) =
∞∑
𝑛=0

∑
(𝑛=𝑛1+𝑛2)

𝑐 (𝑛1, 𝑛2)Δ
𝑝
𝑛1

(
𝑤2

1𝑦1
)
Δ𝑝

𝑛2

(
𝑤2

2𝑦2
)
,

(25)
with Δ𝑝

𝑛 (𝑥) as previously defined.
Under the single scale factor assumption 𝑤1 = 𝑤2 = 1, the

polynomial in (15) to obtain the coefficients 𝑐 (𝑛1, 𝑛2) reduces
to

𝜃𝑛 (𝑢1, 𝑢2) =

{
0, 𝑛 odd,

(𝑝−1+𝑛/2)!
(𝑝−1)!(𝑛/2)! ∣𝑟∣𝑛 (𝑢1𝑢2)

𝑛/2
, 𝑛 even,

(26)
where 𝑟 is the complex value from the correlation matrix

R =

(
1 𝑟
𝑟∗ 1

)
. Thus, there is only one non-null coefficient

for each even value of 𝑛 given by

𝑐 (𝑛/2, 𝑛/2) =
(𝑝− 1 + 𝑛/2)!

(𝑝− 1)! (𝑛/2)!
∣𝑟∣𝑛 , (27)

and the series for the joint CDF in the bivariate case can be
rewritten as

𝐹𝑌1,𝑌2 (𝑦1, 𝑦2) = 𝐺𝑝 (𝑦1)𝐺𝑝 (𝑦2)+

𝑒−𝑦1𝑒−𝑦2𝑦𝑝
1𝑦

𝑝
2

(𝑝− 1)!

∞∑
𝑛=1

(𝑛− 1)!

𝑛 (𝑝+ 𝑛− 1)!
∣𝑟∣2𝑛𝐿𝑝

𝑛−1(𝑦1)𝐿
𝑝
𝑛−1(𝑦2),

(28)
where 𝐺𝑝 (𝑥) is the gamma CDF, defined in (8). Finally,
the distribution of the maximum is obtained by setting
𝑦1 = 𝑦2 = 𝑧 in (28), which yields

𝐹𝑍(𝑧) = 𝐺𝑝(𝑧)
2 +

𝑒−2𝑧𝑧2𝑝

(𝑝− 1)!

∞∑
𝑛=1

(𝑛− 1)!

𝑛 (𝑝+ 𝑛− 1)!
∣𝑟∣2𝑛𝐿𝑝

𝑛−1(𝑧)
2.

(29)

2) Approximation for 𝑧 → 0: In order to obtain an
approximation of 𝐹𝑍 (𝑧) for small values of 𝑧, we first study
the behaviour of the delta functions Δ𝑝

𝑛 (𝑥) in the limit
𝑥 → 0. After substituting the exponential function by its
Taylor expansion in (14) and some straightforward algebra,
we arrive at

lim
𝑥→0

Δ𝑝
𝑛 (𝑥) =

𝑥𝑝

𝑝!
. (30)

Then, (30) is used in (21) to obtain the following approxima-
tion which holds for 𝑧 → 0

𝐹𝑍 (𝑧) ≈ 𝛼

(
1

𝑝!

)𝑘

𝑧𝑝𝑘
𝑘∏

𝑗=1

𝑤2𝑝
𝑗 , (31)

where 𝛼 is the sum of all the coefficients, namely

𝛼 =

∞∑
𝑛=0

∑
(𝑛=𝑛1+...+𝑛𝑘)

𝑐 (𝑛1, . . . , 𝑛𝑘). (32)

Also, it is possible to see from (47) that the sum of coefficients
can be obtained as

𝛼 = ∣I− (I−WRW)∣−𝑝 = ∣WRW∣−𝑝 . (33)

Then, the approximation for the CDF of the maximum is
rewritten as

𝐹𝑍 (𝑧) ≈ ∣WRW∣−𝑝

(
1

𝑝!

)𝑘

𝑧𝑝𝑘
𝑘∏

𝑗=1

𝑤2𝑝
𝑗 , (34)

which, under the single scale factor assumption, simplifies to

𝐹𝑍 (𝑧) ≈ ∣R∣−𝑝

(
1

𝑝!

)𝑘

𝑧𝑝𝑘. (35)

IV. APPLICATIONS

In this section, the derived expressions for the CDF of the
maximum of the diagonal elements of a complex Wishart
matrix are applied to the performance analysis of two different
MIMO systems. First, the outage probability is analyzed for
MIMO systems with receive antenna selection under arbitrar-
ily correlated fading. Then, the same analytical approach is
applied to codebook based transmit beamforming systems with
MRC at the receiver side.

A. Receive antenna selection in MIMO spatially correlated
fading

Consider a MIMO communication system with 𝑁𝑇 trans-
mit and 𝑁𝑅 receive antennas, where all antennas are used
for transmission and only a single receive antenna, which
maximizes the instantaneous SNR, is selected. The MIMO
fading channel is modeled by the 𝑁𝑅 × 𝑁𝑇 random matrix
H, defined according to the well-known Kronecker spatial
correlation model [28]

H = [h1,h2, . . . ,h𝑁𝑇 ] = R
1
2

𝑅GR
1
2

𝑇 , (36)

where R𝑇 and R𝑅 are the transmit and receive correlation
matrices, respectively, whereas the entries of G are i.i.d. com-
plex Gaussian random variables with zero mean and unit
variance. Transmit antennas are assumed to be spaced far
enough so that the transmitter side correlation is negligible,
or R𝑇 = I, and thus, spatial correlation only appears at the
receiver side. In this case, the column vectors of the channel
matrix h𝑗 = [ℎ1𝑗 , ℎ2𝑗 , . . . , ℎ𝑁𝑅𝑗 ]

𝑇 , for 𝑗 = 1, . . . , 𝑁𝑇 , are
zero-mean i.i.d. complex Gaussian processes with covariance
matrix R𝑅, i.e., h𝑗 ∼ 𝒞𝒩 (0,R𝑅). Also, note that the matrix
Sℎ =

∑𝑁𝑇

𝑗=1 h𝑗h
𝐻
𝑗 has the complex Wishart distribution

𝒞𝒲𝑁𝑅(𝑁𝑇 ,R𝑅) and its 𝑁𝑅 diagonal elements are the square
norms of the row vectors of H.

The baseband complex envelope of the received signal after
the matched filter is expressed as y = Hx + n, where n
is the 𝑁𝑅-dimensional white noise vector whose elements
are complex Gaussian random variables with zero mean and
variance 𝜎2

𝑛. The transmitted signal is denoted by the column
vector x and the total average transmit power is normalized to
one, i.e., E

[
x𝐻x

]
= 1, and evenly distributed among all the

antennas. Under these assumptions, the average SNR at each
receiver branch is given by 𝛾 = 1

𝜎2
𝑛
.
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The receive antenna selection technique, also referred to as
SC, selects the antenna which maximizes the instantaneous
SNR [5]. In the considered MIMO system with SC, we also
assume that CSI is perfectly known at the receiver but not
available at the transmitter, where some diversity technique
is applied (e.g., orthogonal STBCs). Then, the instantaneous
SNR at the output of the combiner is given by

𝛾 =
𝛾

𝑁𝑇
𝑍, (37)

where

𝑍 = max
1≤𝑖≤𝑁𝑅

𝑁𝑇∑
𝑗=1

∣ℎ𝑖𝑗 ∣2 (38)

is the maximum of the squared norms of the row vectors of
the channel matrix, which are the diagonal elements of the
complex Wishart matrix Sℎ. Therefore, the CDF of 𝑍 can be
obtained from the derived series expansion in (24) as

𝐹𝑍 (𝑧) =

∞∑
𝑛=0

𝑠𝑛∑
𝑖=1

𝑐
(
𝑝
(𝑛)
𝑖,1 , . . . , 𝑝

(𝑛)
𝑖,𝑁𝑅

) 𝑁𝑅∏
𝑗=1

Δ𝑁𝑇

𝑝
(𝑛)
𝑖,𝑗

(
𝑤2𝑧

)
,

(39)
where the coefficients 𝑐

(
𝑝
(𝑛)
𝑖,1 , . . . , 𝑝

(𝑛)
𝑖,𝑁𝑅

)
depend on 𝑁𝑇 , 𝑤,

and the correlation matrix R𝑅, and can be easily computed
with the algorithm provided in Appendix B. Recall that the
delta functions, as defined in (14), are basically a scaled
version of the generalized Laguerre polynomials multiplied
by the exponential function.

As a result, the outage probability for the MIMO system
with SC under spatially correlated fading is given by

𝑃𝑜𝑢𝑡 (𝑥) ≜ Pr {𝛾 ≤ 𝛾0} = Pr

{
𝑍 ≤ 𝑁𝑇

𝛾0
𝛾

}
= 𝐹𝑍

(
𝑁𝑇

1

𝑥

)

=

∞∑
𝑛=0

𝑠𝑛∑
𝑖=1

𝑐
(
𝑝
(𝑛)
𝑖,1 , . . . , 𝑝

(𝑛)
𝑖,𝑁𝑅

) 𝑁𝑅∏
𝑗=1

Δ𝑁𝑇

𝑝
(𝑛)
𝑖,𝑗

(
𝑤2𝑁𝑇

𝑥

)
,

(40)
where 𝛾0 is the outage threshold and 𝑥 ≜ 𝛾

𝛾0
is the normalized

average SNR. To the best of the authors’ knowledge, this
expression for the outage probability is original and novel.
Also, it is emphasized that (40) is a general expression valid
for an arbitrary correlation matrix and any number of receive
antennas. Recently in [5], the same system was analyzed but
only under the assumption of a real exponential correlation
matrix for 𝑁𝑅 > 3 due to the lack of results for the diagonal
distribution of a complex Wishart matrix. This was however a
valid correlation model only when the antennas are placed in
a uniform linear array [29] and therefore, our analysis extends
the results in [5] to the general arbitrary correlation case.

1) Diversity Order: After taking (35) into account, the out-
age probability in the high SNR regime can be approximated
by

𝑃𝑜𝑢𝑡 (𝑥) ≈ ∣R𝑅∣−𝑁𝑇

(
1

𝑁𝑇 !

)𝑁𝑅 𝑁𝑁𝑇𝑁𝑅

𝑇

𝑥𝑁𝑇𝑁𝑅
, (41)

which suggests that a diversity order of 𝑁𝑇𝑁𝑅 is achieved.
The same result has been obtained in [5], thus confirming the
validity of our derivations.

2) Dual branch case (𝑁𝑅 = 2): For a dual branch receiver,
the simplified expression for the bivariate case in (29) can be
used to arrive at the outage probability, which is given by

𝑃𝑜𝑢𝑡 (𝑥) = 𝐺𝑁𝑇

(
𝑁𝑇

𝑥

)2

+

𝑒
−2𝑁𝑇

𝑥

𝑥2𝑁𝑇

𝑁2𝑁𝑇
𝑇

(𝑁𝑇 − 1)!

∞∑
𝑛=1

(𝑛− 1)!

𝑛 (𝑁𝑇 + 𝑛− 1)!
∣𝑟∣2𝑛𝐿𝑁𝑇

𝑛−1

(
𝑁𝑇

𝑥

)2

,

(42)
where 𝑟 is the out-diagonal element of the correlation matrix
R𝑅. As shown by the simplified expression, the outage
probability increases with ∣𝑟∣, which can be dealt by increasing
the number of transmit antennas 𝑁𝑇 .

B. Transmit beamforming under limited-rate feedback

Here, we consider a MIMO MRC system with 𝑁𝑇 transmit
and 𝑁𝑅 receive antennas, where codebook-based transmit
beamforming is applied together with MRC at the receiver.
The MIMO channel is modeled by the 𝑁𝑅 × 𝑁𝑇 random
matrix H, whose entries are i.i.d. complex Gaussian random
variables with zero mean and unit variance. The beamformer
codebook matrix B = [b1,b2, . . . ,b𝐿] consists of 𝐿 different
𝑁𝑇 ×1 column vectors b𝑖, for 𝑖 = 1, . . . , 𝐿. For each channel
realization, the receiver selects a beamformer vector which
maximizes the instantaneous SNR and reports it back to the
transmitter over a finite-rate feedback channel using log2 (𝐿)
bits. In this case, the complex envelope of the received
signal after the matched filter (before the MRC processing)
is expressed as y = Hb̂𝑥 + n, where 𝑥 is the transmitted
symbol, b̂ is the selected beamformer vector that satisfies

b̂ = argmax
b∈B

∥Hb∥2 , (43)

and n is the 𝑁𝑅-dimensional white noise vector whose
elements are complex Gaussian random variables with zero
mean and variance 𝜎2

𝑛. The total average transmit power
is normalized to one, and consequently, E

[∣𝑥∣2] = 1 and
∥b𝑖∥2 = 1, for 𝑖 = 1, . . . , 𝐿. Thus, the average SNR at
each receive antenna is given by 𝛾 = 1

𝜎2
𝑛
. Then, assuming

the channel matrix H perfectly known at the receiver, the
instantaneous SNR after the MRC processing is expressed as
𝛾 = 𝛾𝑍 with

𝑍 = max
1≤𝑖≤𝐿

∥Hb𝑖∥2 = max
1≤𝑖≤𝐿

𝑁𝑅∑
𝑗=1

∣h𝑗b𝑖∣2, (44)

where {h𝑗} are the row vectors of H. Once again, 𝑍 is
the maximum of the squared norms 𝑣𝑖 = ∥Hb𝑖∥2, for
𝑖 = 1, . . . , 𝐿, which can be identified as the diagonal elements
of a certain complex Wishart matrix. Specifically, 𝑣𝑖 are the
diagonal elements of the matrix S𝑏𝑓 =

∑𝑁𝑅

𝑗=1 k𝑗k
𝐻
𝑗 , with

k𝑗 = B𝐻h𝐻
𝑗 , which has the complex Wishart distribution

𝒞𝒲𝐿(𝑁𝑅,B𝐻B). Equivalently, 𝑍 is the maximum of 𝐿
correlated central chi-square variables with 2𝑁𝑅 degrees of
freedom and underlying correlation matrix R𝑏𝑓 = B𝐻B, i.e.,
with correlation determined by the codebook matrix. Hence,
the CDF of 𝑍 can be expressed by the series expansion in
(24) as

𝐹𝑍 (𝑧) =
∞∑
𝑛=0

𝑠𝑛∑
𝑖=1

𝑐
(
𝑝
(𝑛)
𝑖,1 , . . . , 𝑝

(𝑛)
𝑖,𝐿

) 𝐿∏
𝑗=1

Δ𝑁𝑅

𝑝
(𝑛)
𝑖,𝑗

(
𝑤2𝑧

)
, (45)
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TABLE I
CORRELATION MATRICES CONSIDERED IN THE PERFORMANCE ANALYSIS OF THE SC SYSTEM.

R1

⎛
⎜⎝

1 0.50 0.25 + 0.33𝑗 −0.10 + 0.33𝑗
0.50 1 0.17− 0.33𝑗 −0.17

0.25− 0.33𝑗 0.17 + 0.33𝑗 1 0.33− 0.25𝑗
−0.10− 0.33𝑗 −0.17 0.33 + 0.25𝑗 1

⎞
⎟⎠

R2

⎛
⎜⎜⎜⎜⎜⎝

1 0.50 0.25 + 0.33𝑗 −0.10 + 0.33𝑗 0.12𝑗 0.11 + 0.17𝑗
0.50 1 0.17− 0.33𝑗 −0.17 0.17− 0.17𝑗 −0.17

0.25− 0.33𝑗 0.17 + 0.33𝑗 1 0.33− 0.25𝑗 −0.33 0.33− 0.17𝑗
−0.10− 0.33𝑗 −0.17 0.33 + 0.25𝑗 1 0.33− 0.11𝑗 0.12

−0.12𝑗 0.17 + 0.17𝑗 −0.33 0.33 + 0.11𝑗 1 −0.20
0.11− 0.17𝑗 −0.17 0.33 + 0.17𝑗 0.12 −0.20 1

⎞
⎟⎟⎟⎟⎟⎠
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Fig. 1. CDF of 𝑍 , the maximum of the square norms of the row vectors of
the channel matrix H.

where the coefficients 𝑐
(
𝑝
(𝑛)
𝑖,1 , . . . , 𝑝

(𝑛)
𝑖,𝐿

)
depend on 𝑁𝑅, 𝑤,

and the correlation matrix R𝑏𝑓 , and are easily computed
with the algorithm in Appendix B. Then, the previous result
allows obtaining the outage probability of the codebook-based
transmit beamforming system, which is given by

𝑃𝑜𝑢𝑡 (𝑥) ≜ Pr {𝛾 ≤ 𝛾0} = Pr

{
𝑍 ≤ 𝛾0

𝛾

}
=

𝐹𝑍

(
1

𝑥

)
=

∞∑
𝑛=0

𝑠𝑛∑
𝑖=1

𝑐
(
𝑝
(𝑛)
𝑖,1 , . . . , 𝑝

(𝑛)
𝑖,𝐿

) 𝐿∏
𝑗=1

Δ𝑁𝑅

𝑝
(𝑛)
𝑖,𝑗

(
𝑤2

𝑥

)
.

(46)

V. NUMERICAL RESULTS

The derived expressions have been numerically evaluated in
order to analyze the performance of such systems. To check
the validity of the derived expressions, we also provide some
Monte-Carlo simulation results for the CDF of the SNR at the
output of the combiner. Results in Figs. 1 and 2 correspond
to the performance of the MIMO system with SC under
arbitrarily correlated fading. On the one hand, Fig. 1 shows
the CDF of 𝑍 which is a scaled version of the SNR at the
output of the combiner. The analytical expression in (39) has
been evaluated for two different arbitrary correlation matrices,
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Fig. 2. Outage probability versus average normalized SNR for a SC system
with different antenna configurations and arbitrary correlation matrices.

R1 and R2 (see Table I), corresponding to 𝑁𝑅 = 4 and
𝑁𝑅 = 6 receive antennas respectively, 𝑤 = 1, and several
values of 𝑁𝑇 . The truncation limit of the series in (39) has
been set to 𝑁𝑚𝑎𝑥 = 8, which yields a total of 25 terms
for 𝑁𝑅 = 4 and 36 terms for 𝑁𝑅 = 6. It is emphasized
that the computation of the corresponding coefficients by the
algorithm provided in Appendix B takes less than one second
in a common PC. The simulation values of the CDF are also
superimposed to the analytical curves in Fig. 1 showing that,
with just a few terms of the series, they are nearly in perfect
agreement. The rapid convergence of the series is illustrated
in Table II, which presents the truncation limit and number of
terms needed to achieve 2, 3, and 4 significant figure accuracy.
On the other hand, the outage probability of the SC system
with 𝑁𝑅 = 4 is plotted in Fig. 2 for different values of 𝑁𝑇

and two correlation matrices. In this case, the high-correlation
matrix proposed in [30] for a typical microcell scenario (R3),
is compared to the low-medium correlation scenario defined
by the arbitrary matrix R1. The scale factor has been set to
𝑤 = 0.93 for R3 to assure the convergence of the series.
Also, the high-SNR approximation for the outage probability
has been plotted for R3 and 𝑁𝑇 = 1, 2. It is observed
that the high-correlation scenario determined by R3 degrades
significantly the performance with respect to the arbitrary R1.
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Fig. 3. CDF of 𝑍 , the effective SNR at the output of the MRC processing
when the optimal beamforming codeword is employed.

TABLE II
TRUNCATION LIMIT (𝑁𝑚𝑎𝑥) AND NUMBER OF TERMS NEEDED IN (39)
(𝑁𝑇 = 4) TO ACHIEVE 2, 3, AND 4 SIGNIFICANT FIGURE ACCURACY.

𝑁𝑅 = 4 (R1) 𝑁𝑅 = 6 (R2)

𝑍=5 𝑍=7.5 𝑍=10 𝑍=5 𝑍=7.5 𝑍=10

2-Fig
𝑁𝑚𝑎𝑥 2 2 2 2 2 2

Terms 2 2 2 2 2 2

3-Fig
𝑁𝑚𝑎𝑥 4 4 2 4 2 2

Terms 6 6 2 6 2 2

4-Fig
𝑁𝑚𝑎𝑥 8 6 4 8 6 4

Terms 25 13 6 36 16 6

However, it is shown that the performance loss associated to
the high-correlation scenario can be reduced by increasing the
number of transmit antennas.

Analogously, Figs. 3 and 4 depict the performance results
for the codebook-based transmit beamforming system with
MRC at the receiver. The system performance has been
evaluated for three different values of the receive anten-
nas, 𝑁𝑅 = 2, 4, 6, and two transmit antenna configurations
𝑁𝑇 = 2, 4 with 2-bit and 3-bit codebooks respectively. These
codebooks have been chosen according to the Long Term
Evolution (LTE) cellular technology specifications [31]. Fig. 3
shows the numerical evaluation of the CDF of 𝑍 , given
in (45), for the mentioned cases. The simulated CDF has
also been superimposed to the analytical curves in order to
check the validity of the derived expression. In this case, the
truncation limit has been set to 𝑁𝑚𝑎𝑥 = 10 yielding a total
of 20 and 37 terms for the 2-bit and the 3-bit codebooks,
respectively. Again, it is observed that the simulated values
fit reasonably well with the analytical ones for the considered
series truncation limit. The outage probability of such system
is shown in Fig. 4 for the same antenna configurations and
codebooks.

VI. CONCLUSION

In this paper, we have derived the joint PDF and CDF of
the diagonal elements of a complex Wishart matrix, which
is a particular multivariate chi-square distribution. The CDF
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Fig. 4. Outage probability versus average normalized SNR for
a beamforming-MRC system with different antenna configurations and
LTE-based codebooks.

expression is in the form of an infinite series representation
in terms of the well-known Laguerre polynomials, and has
been shown to be easily computable. This expression has
been used to obtain the distribution of the maximum of the
diagonal elements, which allows analyzing the performance
of two different MIMO systems under practical conditions.
First, our statistical results have been applied to the outage
probability analysis of MIMO systems with receive antenna
selection in arbitrarily correlated Rayleigh fading. Then, the
same analytical approach has been applied to obtain an ex-
pression for the outage probability of codebook-based transmit
beamforming systems with MRC at the receiver.

APPENDIX A
PROOF OF PROPOSITION 1

The coefficients 𝑐 (𝑛1, . . . , 𝑛𝑘) can be obtained from the
expansion of the CF in (5). Specifically, the expansion

∣I− (I−WRW)U∣−𝑝

=

∞∑
𝑛=0

∑
(𝑛=𝑛1+⋅⋅⋅+𝑛𝑘)

𝑐 (𝑛1, . . . , 𝑛𝑘)

𝑘∏
𝑗=1

𝑢
𝑛𝑗

𝑗

︸ ︷︷ ︸
𝜃𝑛(𝑢1,𝑢2,...,𝑢𝑘)

(47)

has been used in the derivation of (9). The determinant in (47)
can be expressed as [23]

∣I− (I−WRW)U∣ = 1 +

𝑘∑
𝑗=1

𝐷𝑗 , (48)

where 𝐷𝑗 is the 𝑗-order polynomial defined in (16). Now,
considering (48) and making use of the binomial expansion,
it is possible to write

∣I− (I−WRW)U∣−𝑝 =

∞∑
𝑛=0

(
𝑝 + 𝑛− 1

𝑛

)
(−1)

𝑛

⎛
⎝ 𝑘∑

𝑗=1

𝐷𝑗

⎞
⎠𝑛

.

(49)
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Then, after applying the multinomial theorem [26, (24.1.2)] to
(49) and further simplifications the expansion can be rewritten
as

∣I− (I−WRW)U∣−𝑝 =

∞∑
𝑛=0

Γ (𝑝 + 𝑛)

Γ (𝑝)

∑
(𝑛=ℓ1+...+ℓ𝑘)

𝑘∏
𝑗=1

(−𝐷𝑗)
ℓ𝑗

ℓ𝑗 !
.

(50)
Finally, the expression (15) for the polynomial
𝜃𝑛 (𝑢1, 𝑢2, . . . , 𝑢𝑘) with coefficients 𝑐 (𝑛1, . . . , 𝑛𝑘) is
obtained by rearranging the terms of the expansion in (50).

APPENDIX B
MATHEMATICATM 7.0 PROGRAM FOR THE

COEFFICIENTS COMPUTATION

Needs["Combinatorica‘"]
GetCoefs[R_, nDeg_, w_, Nmax_] := Module[{Pcoef, Vcoef},

(* INITIALIZATION *)
nVar = Length[R]; Nr = nDeg;
Pcoef = List[ConstantArray[0, nVar]]; Vcoef = List[1];
W = w*IdentityMatrix[nVar];
Rp = IdentityMatrix[nVar] - W.R.W;
Pos = Table[KSubsets[Range[nVar], j], {j, nVar}];
Val = Table[A=Pos[[j]]; Table[Re[Det[Rp[[A[[i]], A[[i]]]]]],

{i, Length[A]}], {j, nVar}];

(* AUX. ROUTINE: INTEGER SOL. OF l1 + 2 l2 +...+ k lk = n *)
Sol[K_] := Module[{r, l},

Clear[n];
cond = Table[If[Apply[And, PossibleZeroQ[Val[[i]]]],

n[i] == 0, n[i] >= 0], {i, 1, nVar}];
r = Reduce[Join[{K == Sum[j n[j], {j, nVar}]}, cond],

Table[n[i], {i, nVar}], Integers];
l = List[ToRules[r]];
Table[n[i], {i, nVar}] /. l];

(* AUX. ROUTINE: COMPUTATION OF POLYNOMIAL Theta_n *)
Polynomial[N_] := Module[{poly = 0},

Y = Table[y[i], {i, nVar}];
If [w == 1, Dr[1] := 1;, Clear[Dr];];
Dr[r_] := (-1)^r Sum[Val[[r]][[m]] Product[

Y[[Pos[[r]][[m]][[l]]]],{l, r}], {m, Length[Val[[r]]]}];
intSol = Sol[N];
If[ArrayDepth[intSol] == 1, ,

poly = (Gamma[Nr])^-1 Sum[Gamma[Nr + Total[intSol[[m]]]]
Product[(-Dr[l])^intSol[[m]][[l]]/(intSol[[m]][[l]])!,

{l, nVar}], {m, Length[intSol]}]]];

(* GET COEFFICIENTS c^, defined under (24), FOR n=1:Nmax *)
For[m = 1, m < Nmax + 1, m++,

polym = Polynomial[m]; Clear[a, p, t];
If[Length[polym] == 0, ,

a = CoefficientRules[polym]; b = List[];
For[k = 1, k < Length[a] + 1, k++,

AppendTo[b, Sort[a[[k]][[1]],
Greater] -> a[[k]][[2]]];];

b = Sort[b]; p = b[[1]][[1]]; t = b[[1]][[2]];
AppendTo[b, ConstantArray[0, nVar] -> 1];
For[l = 2, l < Length[a] + 2, l++,

If[b[[l]][[1]] == p, t = t + b[[l]][[2]];,
AppendTo[Pcoef, p];
AppendTo[Vcoef, t];
t = b[[l]][[2]]; p = b[[l]][[1]];];];];];
{Pcoef, Vcoef}]
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