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Outage Probability Analysis for 𝜂-𝜇 Fading Channels
David Morales-Jiménez and José F. Paris

Abstract—In this Letter we derive exact closed-form expres-
sions for the outage probability (OP) in 𝜂-𝜇 fading channels.
First, a general expression in terms of the confluent Lauricella
function is derived for arbitrary values of 𝜇. Next, we restrict the
analysis to physical 𝜂-𝜇 channel models, i.e. to integer values of
2𝜇, and obtain exact closed-form expressions for the OP in terms
of Marcum Q, Bessel and elementary functions. The results in
this Letter are applicable to the OP analysis of maximal ratio
combining (MRC) over i.i.d. 𝜂-𝜇 or Hoyt fading channels.

Index Terms—𝜂-𝜇 fading, Nakagami-𝑞 (Hoyt) fading, outage
probability, maximal ratio combining.

I. INTRODUCTION

THE 𝜂-𝜇 fading model considers a general non-line-of-
sight (NLOS) propagation scenario. By setting two shape

parameters 𝜂 and 𝜇, this model includes some classical fad-
ing distributions as particular cases, e.g. Nakagami-𝑞 (Hoyt),
One-Sided Gaussian, Rayleigh and Nakagami-𝑚. It has been
shown that the fit of the 𝜂-𝜇 distribution to experimental data
is better than the classical distributions previously mentioned.
A detailed description of the 𝜂-𝜇 fading model can be found
in [1] and references therein.

The outage probability (OP) is a key performance metric
in wireless communications subject to fading. Given the
recent relevancy of 𝜂-𝜇 fading channels, obtaining analytical
expressions for the OP is particularly interesting. To the best
of authors’ knowledge, exact and closed-form expressions for
the OP in 𝜂-𝜇 fading channels are not found in the literature.

The outage probability can be easily obtained from the
cumulative distribution function (CDF) of power 𝜂-𝜇 random
variables. Besides, thanks to the reproductive property of the
𝜂-𝜇 distribution [1], the extension of the OP analysis to maxi-
mal ratio combining (MRC) is trivial. Moreover, it was shown
in [2] that the 𝜂-𝜇 distribution is an accurate approximation
to the sum of i.n.i.d. Nakagami-𝑞 (Hoyt) random variables.
Hence, the 𝜂-𝜇 power CDF also allows to analyze the OP of
MRC over i.n.i.d. Hoyt fading channels. The reasons above
motivate us to focus on the CDF of power 𝜂-𝜇 random
variables. In [1], Yacoub defined the following integral to
represent the complement of the CDF of the power 𝜂-𝜇 fading
distribution
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where −1 < 𝑥 < 1 and 𝑦 ≥ 0.
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In this Letter, we derive closed-form expressions for
Yacoub’s integral 𝑌𝜇(𝑥, 𝑦) which allow us to obtain new
closed-form expressions for the OP in 𝜂-𝜇 fading channels.
Two types of analytical results are obtained for either arbitrary
fading or physical fading models. First, we obtain a general
expression in terms of the confluent Lauricella function Φ

(2)
2

[3, eq. 5.71.21][4] for arbitrary 𝜂-𝜇 fading channels. Next we
consider physical fading models, i.e. those with an integer
number of multipath clusters 𝑁 = 2𝜇, and show that 𝑌𝜇 can
be integrated in terms of the classical Marcum Q and Bessel
functions. Then, the results on Yacoub’s integral are applied
to obtain novel analytical expressions for the OP in 𝜂-𝜇 fading
channels.

The remainder of this paper is organized as follows. The
closed-form expressions for Yacoub’s integral are presented
in Section II. In Section III we apply these results to compute
the outage probability in 𝜂-𝜇 fading channels. Finally, some
conclusions are given in Section IV.

II. CLOSED-FORM EXPRESSIONS FOR YACOUB’S
INTEGRAL

A. Arbitrary 𝜂-𝜇 distribution

The 𝜂-𝜇 fading distribution is fully characterized in terms
of measurable physical parameters. Therefore, it is possible
to fit experimental data by adequately setting the two shape
parameters 𝜂 and 𝜇. In the following proposition we derive
a general expression for (1), which is valid for an arbitrary
value of the 𝜇 parameter, i.e. for a real positive 𝜇.

Proposition 1: Yacoub’s integral 𝑌𝜇 defined in (1) can be
expressed as

𝑌𝜇 (𝑥, 𝑦) = 1−
(
1− 𝑥2

)𝜇
𝑦4𝜇

Γ (1 + 2𝜇)

×Φ2

(
𝜇, 𝜇; 1 + 2𝜇;−(1 + 𝑥)𝑦2,−(1− 𝑥)𝑦2

)
,

(2)

where Φ2 ≡ Φ
(2)
2 is the confluent Lauricella function

[3, eq. 5.71.21][4].
Proof: See Appendix I.

B. Physical 𝜂-𝜇 distribution

Now we restrict the analysis to the case of physical channel
models, which assume an integer number of multipath clusters.
In this case, only a multiple of 1/2 is allowed for the 𝜇
parameter, being 𝑁 = 2𝜇 the number of clusters. In the
subsequent, it is shown that 𝑌𝜇 with an integer value of 2𝜇
can be expressed in terms of classical functions within the
communications theory context.

For convenience, a special function associated to 𝐼𝑚 is
introduced in the following definition, where 𝐼𝑚 is the
𝑚th-order modified Bessel fuction of the first kind.

Definition 1 (Incomplete Lipschitz-Hankel integral of 𝐼𝑚):

𝐼𝑒𝑚 (𝑥;𝛼) ≜
∫ 𝑥

0

𝑡𝑚𝑒−𝛼 𝑡Im (𝑡) 𝑑𝑡, (3)
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where 𝛼 ∈ ℝ, 𝑚 ∈ ℕ; 𝛼 > 1 and 𝑥 ∈ [0,∞).
The incomplete Lipschitz-Hankel integrals (ILHI), studied

by Agrest and Maksimov [5], are functions of interest in
several areas of science and engineering. Recent results in
[6] show that the function in Definition 1 can be expressed in
closed-form by means of a finite combination of Marcum Q
and Bessel functions.

Proposition 2: The 𝑚th-order ILHI 𝐼𝑒𝑚 is expressed as
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(4)

where 𝑄1 is the first-order Marcum Q function. The coeffi-
cients 𝐴𝑙

𝑚(𝛼), 𝐵𝑖,𝑗
𝑚 (𝛼) can be obtained recursively in a finite

number of steps after identifying 𝐴𝑙
𝑚(𝛼) = 𝒜𝑙

𝑚,𝑚(𝛼) and
𝐵𝑖,𝑗

𝑚 (𝛼) = ℬ𝑖,𝑗
𝑚,𝑚(𝛼) in the algorithm given in [6, Appendix

III].
Proof: See [6, Appendix III].

The previous result allows obtaining an exact and
closed-form expression for the Yacoub’s integral 𝑌𝜇. For
convenience in the derivation of this expression, we consider
two different cases for either an odd or even number of
multipath clusters 𝑁 , i.e. for either half-integer or integer
values of 𝜇. On the one hand, if 𝜇 is a half-integer, the
integral 𝑌𝜇 can be rewritten in terms of the ILHI introduced
in Definition 1. Then, the result from Proposition 2 may be
applied to obtain 𝑌𝜇 in closed-form. On the other hand, for
integer values of 𝜇 the final 𝑌𝜇 expression is given by a linear
combination of elementary functions involving polynomials
and exponentials.

The following proposition gathers the two derived expres-
sions for the integral 𝑌𝜇, which are key results for the final
analysis of the outage probability.

Proposition 3: For integer values of 2𝜇, the Yacoub’s in-
tegral 𝑌𝜇 defined in (1) can be expressed by one of the two
following formulas. If 2𝜇 is odd, i.e. 𝜇 is a half-integer, 𝑌𝜇

is expressed as
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)
.

(5)
Otherwise, when 2𝜇 is even, the Yacoub’s integral is cal-

culated as
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where 𝑃
(𝑎,𝑏)
𝑛 are the Jacobi polynomials [7].

Proof: See Appendix II.
Note that, as shown in previous propositions, an exact

and closed-form expression can be obtained for 𝑌𝜇 when 2𝜇
is an integer, i.e. for physical channel models. This result
is exploited in the next section, where the exact outage
probability is obtained in terms of Marcum Q, Bessel, and
elementary functions, thus avoiding the need for numerical
integration.

III. OUTAGE PROBABILITY

In this section we connect previous results on Yacoub’s
integral with the outage probability in 𝜂-𝜇 fading channels.
Analytical expressions are obtained for the OP and some
numerical results are provided. Besides, Monte-Carlo simul-
tation results are presented in order to validate the derived
expressions.

Let Ω be the normalized power of the fading signal, i.e.
E [Ω] = 1. The instantaneous SNR of the channel is 𝛾

.
= Ω𝛾,

where 𝛾 is the average SNR. Then, after taking into account
[1, eq. 19], the outage probability for the 𝜂-𝜇 fading channel
can be expressed as

𝑃𝑜𝑢𝑡 (𝑋)
.
= Pr {𝛾 ⩽ 𝛾𝑜} = 1− 𝑌𝜇

(
𝐻

ℎ
,

√
2ℎ𝜇

𝑋

)
, (7)

where 𝛾𝑜 is the outage threshold, 𝑋
.
= 𝛾

𝛾𝑜
the average

normalized SNR and⎧⎨
⎩

ℎ =
2 + 𝜂−1 + 𝜂

4
, 𝐻 =

𝜂−1 − 𝜂

4
, 0 < 𝜂 < ∞ for format 1,

ℎ =
1

1− 𝜂2
, 𝐻 =

𝜂

1− 𝜂2
,−1 < 𝜂 < 1 for format 2.

(8)
For details on the two formats of the 𝜂-𝜇 distribution the
reader is referred to [1]. Now, it is straighforward to obtain
the closed-form expressions for the OP by substituting the
Yacoub’s integral in (7) with the results from previous section.
Three different expressions are provided for cases involving an
arbitrary, half-integer, or integer value of 𝜇 by substituting (2),
(5) or (6), respectively, into equation (7). Recall that the first
expression involving an arbitrary 𝜇 is valid for a general 𝜂-𝜇
fading distribution, whereas the second and third expressions
correspond to physical channel models with an integer number
of multipath clusters (𝑁 = 2𝜇). For brevity, the final OP
expressions are not explicitly written here.

The extension of the OP analysis to MRC is straightforward
from previous results. Let us consider a MRC receiver with 𝑁𝑟

independent branches. Let Ω𝑛 be the normalized power of the
fading signal corresponding to the 𝑛-th branch. In this case,
the effective instantaneous SNR after the MRC processing is

given by 𝛾𝑀𝑅𝐶
.
= 𝛾

𝑁𝑟∑
𝑛=1

Ω𝑛 . It can be seen in [1] that the

sum of 𝑁𝑟 i.i.d. 𝜂-𝜇 power variates is also 𝜂-𝜇 distributed
with parameters 𝜂 and 𝜇𝑁𝑟. Then, the OP of a MRC receiver
can be obtained by substituting 𝜇 with 𝜇𝑁𝑟 in (7).

Fig. 1 shows some numerical plots from the derived analyt-
ical expressions. The OP for format 1 𝜂-𝜇 fading channels is
depicted as a function of the average SNR for different values
of the 𝜂-𝜇 parameters. Results are shown for arbitrary 𝜂-𝜇
fading distributions (𝜇 = 1.2) and physical channel models
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Fig. 1. Outage probability versus normalized average SNR for 𝜂-𝜇 fading
channels (format 1).

(𝜇 = 0.5 and 𝜇 = 3). Note that the cases with 𝜇 = 0.5
correspond to the Nakagami-𝑞 (Hoyt) distribution with 𝑞2 = 𝜂.
Specifically, the analytical results for 𝜇 = 1.2, 𝜇 = 0.5,
and 𝜇 = 3 are obtained from (2), (5) and (6), respectively.
Simulation results are also superimposed to the analytical
curves, being shown that they are in perfect agreement. Note
that, though numerical results are omitted for brevity reasons,
the analysis is also valid for format 2 fading channels.

IV. CONCLUSIONS

Three different closed-form expressions have been derived
for the outage probability in 𝜂-𝜇 fading channels. For arbitrary
values of the parameter 𝜇 the OP is expressed in a compact
form using the confluent Lauricella function Φ

(𝑛)
2 . For physical

channel models with an odd number of multipath clusters
(2𝜇), the OP is given by Marcum Q and Bessel functions,
whereas in case of an even 2𝜇 the analytical results are in
terms of elementary functions. Our analytical results are also
applicable to compute the OP of MRC receivers in i.i.d. 𝜂-𝜇
fading channels.

APPENDIX A
PROOF OF PROPOSITION 1

After making the change of variable 𝑧 = 𝑥𝑡2 in (1), we can
write

𝑌𝜇 (𝑥, 0) =
2

1
2−𝜇

√
𝜋
(
1− 𝑥2

)𝜇
𝑥2𝜇Γ (𝜇)

∫ ±∞

0

𝑧𝜇−
1
2 𝑒−

𝑧
𝑥 𝐼𝜇− 1

2
(𝑧) 𝑑𝑧,

(9)
where the sign of the upper integration limit is in accordance
with the sign of 𝑥. Then, by making use of [5, eq. 5.7] we
check that 𝑌𝜇 (𝑥, 0) = 1. From this fact, and considering the
previous change of variable, we can express (1) as

𝑌𝜇 (𝑥, 𝑦) = 1− 2
1
2−𝜇

√
𝜋
(
1− 𝑥2

)𝜇
𝑥2𝜇Γ (𝜇)

×
∫ 𝑥𝑦2

0

𝑧𝜇−
1
2 𝑒−

𝑧
𝑥 𝐼𝜇− 1

2
(𝑧) 𝑑𝑧.

(10)

Denoting 𝑝 = 𝑥𝑦2 and 𝑞 = 1/𝑥 and with the help of
[8, eq. 29.3.50], we can rearrange the Laplace transform

ℒ [𝑓 (𝑝) ; 𝑝, 𝑠]
.
=
∫∞
0 𝑓 (𝑝) 𝑒−𝑝𝑠𝑑𝑝 of the integral in (10) in

the following form

ℒ
[∫ 𝑝

0

𝑧𝜇−
1
2 𝑒−𝑞 𝑧𝐼𝜇− 1

2
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]
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2Γ(𝜇)√
𝜋

1

𝑠 (𝑠+ 𝑞 + 1)𝜇 (𝑠+ 𝑞 − 1)𝜇
=

2𝜇−
1
2Γ(𝜇)√
𝜋

1

(𝑞2 − 1)
𝜇

1

𝑠
(
1 + 𝑠

𝑞+1

)𝜇 (
1 + 𝑠

𝑞−1

)𝜇 =

2𝜇−
1
2Γ(𝜇)√
𝜋

1

(𝑞2 − 1)
𝜇

{ (
𝑞2 − 1

)𝜇
Γ (1 + 2𝜇)

}

×
{
Γ (1 + 2𝜇)

𝑠1+2𝜇

}(
1− (−(𝑞+1))

𝑠

)−𝜇 (
1− (−(𝑞−1))

𝑠

)−𝜇

.

(11)
Identifying [9, eq. 3.43.1.4] with (11) and substituting in (10)
we obtain the desired result.

APPENDIX B
PROOF OF PROPOSITION 3

The result for an odd 2𝜇 is obtained after identifying
Definition 1 in (10) and taking into account the sign of 𝑥.
The result for an even 2𝜇 is again obtained working out the
integral in (10). First, [8, eq. 29.3.50] is used to represent the
involved integral by an inverse Laplace transform

ℒ
[∫ 𝑝

0

𝑧𝜇−
1
2 𝑒−𝑞 𝑧𝐼𝜇− 1

2
(𝑧) 𝑑𝑧; 𝑝, 𝑠

]
=

2𝜇−
1
2Γ(𝜇)√
𝜋

1

2𝜋𝑗

∫ 𝜀+𝑗∞

𝜀−𝑗∞

𝑒𝑠𝑥

𝑠 (𝑠+ 𝑞 + 1)
𝜇
(𝑠+ 𝑞 − 1)

𝜇 𝑑𝑠.

(12)
Then, since 𝜇 is a nonnegative integer in this case, we can use
the well-known residue theorem and, after some tedious but
straightforward algebra, the desired expression is obtained.
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