
674 IEEE COMMUNICATIONS LETTERS, VOL. 16, NO. 5, MAY 2012

Outage Probability Analysis for MRC in
η − μ Fading Channels with Co-Channel Interference

David Morales-Jiménez, José F. Paris, and Angel Lozano

Abstract—Exact closed-form expressions are obtained for the
outage probability of maximal ratio combining in η − μ fading
channels with antenna correlation and co-channel interference.
The scenario considered in this work assumes the joint pres-
ence of background white Gaussian noise and independent
Rayleigh-faded interferers with arbitrary powers. Outage proba-
bility results are obtained through an appropriate generalization
of the moment-generating function of the η− μ fading distribu-
tion, for which new closed-form expressions are provided.

Index Terms—Outage probability, η − μ fading, co-channel
interference (CCI), maximal ratio combining (MRC).

I. INTRODUCTION

D IVERSITY combining is a well-known strategy to mit-
igate the performance degradation caused by multipath

fading and co-channel interference (CCI) in wireless systems
[1]. For a communication link without CCI, maximal ratio
combining (MRC) is the optimal combining technique in
terms of maximizing the SNR at the output of the combiner.
However, optimal combining in the presence of CCI is much
more complex than MRC and typically requires covariance
information about the CCI that may not be available. There-
fore, in practice many wireless systems use MRC even in the
presence of CCI.

The η − μ fading model considers a very general
non-line-of-sight propagation scenario. By setting two shape
parameters η and μ, this model subsumes the classical fading
distributions as particular cases, e.g., Nakagami-q (Hoyt),
one-sided Gaussian, Rayleigh, and Nakagami-m. Because of
its wider generality, the η − μ distribution can better fit
experimental data. A detailed description of the η − μ fading
model can be found in [2] and references therein.

Outage probability (OP) is a key performance metric for
narrowband wireless systems [1, ch. 10]. Although consider-
able attention has been paid to its analysis, few results are
found in the literature for η − μ fading. As an analytical
hurdle, the general approach adopted in [1, ch. 10] is not
applicable because the Gaussian characterization of the η− μ
distribution is not circularly symmetric. An approximated

Manuscript received January 19, 2012. The associate editor coordinating
the review of this letter and approving it for publication was Z. Hadzi-Velkov.
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result in integral form has been provided in [3] for suboptimal
equal-gain combining. Only recently have exact closed forms
for the OP in η−μ fading channels been unveiled, either with
background noise only [4] or in interference-limited conditions
(without background noise) [5]; no results are available with
mixed background noise and interference. For the classical
fading distributions some such results are available [6], [7].
In particular, [6] allows for both background noise and in-
terference under Nakagami-m fading for the desired signal
and Rayleigh-faded interferers. In turn, [7] considers a single-
antenna receiver under Hoyt fading.

The analysis in [6], [7] reveals that the OP involves a certain
generalization of the moment generating function (MGF) of
the fading distribution, referred to as the incomplete gener-
alized MGF (IG-MGF). Given the broadness of the η − μ
distribution and the usefulness of the IG-MGF, it is of great
interest to obtain expressions for this generalization which is
not currently available in the literature.

In this paper, new expressions are obtained for the IG-MGF
of the η − μ distribution. By utilizing the IG-MGF results,
closed-form expressions are derived for the OP of MRC with
an arbitrary number of (possibly correlated) antennas in η−μ
fading channels under any arbitrary mixture of background
noise and CCI. This generalizes and unifies the findings in
[4], [6], [7].

II. INCOMPLETE GENERALIZED MGF OF THE η − μ
FADING DISTRIBUTION

The IG-MGF has been found useful in the analysis of
communication systems subject to interference [6], [7]. This
section introduces this generalization of the MGF and presents
original expressions for the IG-MGF of the sum of η − μ
variates, which are then applied to the OP analysis of MRC
in η − μ fading channels.

A. Definitions

Definition 1 (Incomplete Generalized MGF): Consider a
continuous random variable (RV) X with PDF fX(·) and
CDF FX(·). The IG-MGF of X , if it exists, is defined as

GX(a, b; ζ) =

∫ ∞

ζ

xa ebx fX (x) dx, (1)

where2 b ∈ C, a is a nonnegative integer, and ζ ∈ R, ζ ≥ 0.
Definition 1 includes, as particular cases, several important

statistical functions associated with X : GX(0, 0; ζ) is the

2Although b is only evaluated on the real line, the complex domain is
assumed here in accordance with the usual definition of the MGF in the
context of communications theory [1].

1089-7798/12$31.00 c© 2012 IEEE
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complementary CDF; GX(0, b; 0) is the MGF; GX(0, b; ζ) is
the marginal MGF and GX(a, b; 0) is the generalized MGF.

Definition 2 (Complementary IG-MGF): The complemen-
tary IG-MGF G̃X(a, b; ζ) of a RV X is, if it exists,

G̃X(a, b; ζ) =

∫ ζ

0

xa ebx fX (x) dx. (2)

Definition 2 includes the CDF of X as a particular case,
specifically, FX(x) is given by G̃X(0, 0;x).

B. IG-MGF of the Sum of Squared i.i.d. η − μ Variates

Let us now focus on the RV X =
∑L

i=1 Y
2
i where Y 2

i ,
i = 1, ..., L, are independent and identically distributed (i.i.d.)
squared η − μ variates with mean Ω = E

[
Y 2
i

]
. X is the sum

of L i.i.d. squared η−μ variates and its MGF is given by [2]

MX (s) =

[
c1c2

(−s− c1) (−s− c2)

]μL
, (3)

where c1 = − 2μ(h+H)
Ω and c2 = − 2μ(h−H)

Ω . The parameters
h and H , functions of η, are defined as [2]{

h = 2+η−1+η
4 , H = η−1−η

4 ; 0 < η < ∞ Format 1,
h = 1

1−η2 , H = η
1−η2 ; −1 < η < 1 Format 2.

(4)
As explained in [2], the two different formats for the η-μ
distribution correspond to different physical significances and
range of values for η. The motivation for utilizing h and
H , rather than η, is to have a unified representation that
encompasses both formats.

In order to obtain the IG-MGF of X in closed-form, the
subsequent Lemmas provide expressions for the generalized
MGF, GX(a, b; 0) = GX(a, b; ζ) + G̃X(a, b; ζ), and for the
complementary IG-MGF, G̃X(a, b; ζ); their difference gives
the final IG-MGF.

Lemma 1: Consider a RV X given by the sum of L i.i.d.
squared η−μ variates with mean Ω. Sufficient conditions for
the existence of the generalized MGF of X , GX(a, b; 0), are:
a ≥ 0 and �{b} < 0. Then, for arbitrary μ,

GX (a, b; 0) = (−1)a (c1c2)
μL a!

a∑
k=0

(−μL− k + 1)k (−μL− a+ k + 1)a−k

k! (a− k)! (−b− c1)
μL+k

(−b− c2)
μL+a−k

(5)

where (·)a is the pochhammer symbol.
Proof: See Appendix A.

Lemma 2: Consider a RV X given by the sum of L i.i.d.
squared η−μ variates with mean Ω. Then, the complementary
IG-MGF of X is given by

G̃X(a, b; ζ) =
ζ2μL+a(−1)a (c1c2)

μL

Γ (2μL+ a+ 1)
a∑

k=0

a!

k! (a− k)!
(−μL− k + 1)k (−μL− a+ k + 1)a−k

Φ
(2)
2 [μL+k, μL+a−k; 2μL+a+1; (c1+b) ζ, (c2+b) ζ] ,

(6)

where Γ (·) is the gamma function and Φ
(2)
2 is the confluent

Lauricella function [8].

Proof: See Appendix B.
Corollary 1: Under the conditions of Lemma 1 and Lemma

2, the IG-MGF of the sum of L i.i.d. squared η − μ RVs is
given by

GX(a, b; ζ) = GX(a, b; 0)− G̃X(a, b; ζ), (7)

where GX(a, b; 0) and G̃X(a, b; ζ) are respectively given in (5)
and (6).

C. IG-MGF of the Sum of Squared Correlated η−μ Variates

For the case of correlated η − μ variates, we restrict the
analysis to 2μ integer. This entails little loss in generality as
it includes the classical fading distributions (Hoyt, one-sided
Gaussian, Rayleigh, and Nakagami-m) as particular cases.

Consider X =
∑L

i=1 Y
2
i with Y 2

i , i = 1, ..., L, identically
distributed (not necessarily independent) squared η−μ variates
with mean Ω = E

[
Y 2
i

]
. The RV X is the sum of L identically

distributed squared η−μ variates (for integer 2μ) and its MGF
has been recently given in [9] as

MX (s) =

L∏
i=1

(
1− 2λA

i s
)−μ (

1− 2λB
i s
)−μ

, (8)

where λA
i and λB

i , i = 1...L, are, respectively, the eigenvalues
of the matrices A and B, defined as

A=
−1

2c1

⎛
⎜⎜⎝

1 ρ12 . . . ρ1L
ρ∗12 1 . . . ρ2L

...
...

. . .
...

ρ∗1L ρ∗2L . . . 1

⎞
⎟⎟⎠ ; B=

c1
c2

A,

with {ρij} being the correlation coefficients between the
complex Gaussians that underlie Yi and Yj [9].

Lemma 3: Consider X given by the sum of L identically
distributed squared η − μ variates with mean Ω. Then, for
integer 2μ, the generalized MGF of X is given by

GX (a, b; 0) = (−1)
a

∑
r1+...+r2L=a

a!

r1!r2!...r2L!

2L∏
i=1

(2λi)
−μ

(−μ− ri + 1)ri

(
−b+

1

2λi

)−μ−ri

,

(9)

where λi = λA
i+1
2

for i odd and λi = λB
i
2

for i even.
Proof: See Appendix A.

Lemma 4: Consider X given by the sum of L identically
distributed squared η − μ variates with mean Ω. Then, for
integer 2μ, the complementary IG-MGF of X is given by
(10), where λi is as in Lemma 3.

Proof: See Appendix B.
The closed-form expression for the IG-MGF in the corre-

lated case is obtained from Corollary 1 by substituting (9) and
(10) into (7).

III. OUTAGE PROBABILITY ANALYSIS

The mathematical tools provided in the previous section are
now used to obtain exact closed-form and easily computable
expressions for the OP of MRC receivers in η − μ fading
channels under Rayleigh CCI.
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G̃X(a, b; ζ) =
(−1)aζ2μL+a

Γ (2μL+ a+ 1)

∑
r1+...+r2L=a

a!

r1!r2!...r2L!

(
2L∏
i=1

(−μ− ri + 1)ri (2λi)
−μ

)

Φ
(2L)
2

[
μ+r1, .., μ+r2L; 2μL+a+1;

(
b− 1

2λ1

)
ζ, ..,

(
b− 1

2λ2L

)
ζ

]
(10)

A. Models

Consider an L-antenna MRC receiver with perfect channel
knowledge. The desired signal at every antenna is contami-
nated by M CCI terms plus additive white Gaussian noise
(AWGN) with zero mean and variance σ2. The desired signal,
with unit average power, and the interference signals, with
arbitrary average powers Pi, i = 1, ...,M , experience flat
fading. The desired signal experiences η − μ fading, possibly
non-independent across antennas, while the CCI terms are
subject to independent Rayleigh fading.

Let h0 = [h01, . . . , h0L]
T and hi = [hi1, . . . , hiL]

T denote,
respectively, the channel gain vectors for the desired and the
ith interferer at the receiver. The entries {hij} have normalized
average power, i.e., E[|hij |2] = 1, i = 0, ...,M , j = 1, ..., L.
For convenience, we define SNR = 1/σ2 as the signal-to-
noise ratio per antenna and SIRi = 1/Pi as the per-antenna
signal-to-interference ratio for the ith interferer. Then, the
received baseband signal vector y can be written as

y = h0b0 +
M∑
i=1

1√
SIRi

hibi +
1√
SNR

n, (11)

where n is the L-dimensional complex noise with zero mean
and unit variance, and b0 and bi are, respectively, the trans-
mitted symbols from the desired and ith interfering user,
normalized such that E[|b0|2] = E[|bi|2] = 1.

With MRC, the output signal is xMRC = hH
0 y which, from

(11), equals

xMRC = ‖h0‖2 b0 +
M∑
i=1

1√
SIRi

hH
0 hibi +

1√
SNR

hH
0 n. (12)

The output instantaneous signal-to-interference-plus-noise ra-
tio (SINR) is then γ = X

Z+1/SNR
, where X = ‖h0‖2 =∑L

n=1 |h0n|2 is the effective power of the desired signal at
the MRC output, and Z the total instantaneous power of the
interfering signals. It follows that X is distributed as the sum
of L squared η − μ variables with unit mean and, therefore,
E [X ] = L.

B. Problem Formulation

Let us divide the total number of interferers M into J
groups with ni interferers in a given group, where every
interferer in a group has the same average power 1/SIRi. It
is shown in [6] that the corresponding OP is

Pout
.
= Pr {γ ≤ γ0} =

∫ γ0
SNR

0

fX (x) dx︸ ︷︷ ︸
P�

out

+

J∑
i=1

ni∑
j=1

ni−j∑
k=0

k∑
�=0

Eij
e

SIRi
SNR SIRk

i (−SNR)
�−k

�!(k − �)!γ�
0

∫ ∞

γ0
SNR

x�e−SIRi
x
γ0 fX (x) dx,

(13)

where γ0 is the outage threshold and Eij are given by [6]:

Eij = (−1)
j−1

∑
ΩA

J∏
k=1,k �=i

(nk + qk − 1)!

qk! (nk − 1)!

SIR
nk

k SIR
qk
i

(SIRk − SIRi)
nk+qk

,

(14)

with ΩA being the set of J-tuples satisfying ΩA ={
(q1, . . . , qJ) : qk ∈ N, qi = 0,

∑J
k=1 qk = j − 1

}
, and N the

set of non-negative integers.
The OP in (13) is expressed in terms of two incomplete

integrals. To obtain a closed-form expression, we proceed
to work these integrals out. The first one, P �

out, represents
the OP in the interference-free case and is given by the
CDF of X , which is directly G̃X(0, 0; γ0

SNR
). The second one,

representing the impact of the interference on the OP, consists
of a linear combination of the incomplete generalized MGF of
X , GX(·, ·; ·). Specifically, the integrals therein can be readily
identified with the IG-MGF as∫ ∞

γ0
SNR

x�e−SIRi
x
γ0 fX (x) dx = GX

(
�,
−SIRi

γ0
;
γ0

SNR

)
. (15)

C. Outage Probability Results

1) i.i.d. fading: The final OP expression for MRC in
η − μ fading channels under the presence of Rayleigh-faded
interferers is obtained by substituting (15) into (13), which
yields

Pout = G̃X

(
0, 0;

γ0
SNR

)
+

J∑
i=1

ni∑
j=1

ni−j∑
k=0

k∑
l=0

Eij
e

SIRi
SNR SIRk

i (−SNR)�−k

�!(k − �)!γ�
0

GX

(
�,
−SIRi

γ0
;
γ0

SNR

)
,

(16)

where the coefficients Eij are given in (14), G̃X(0, 0; γ0

SNR
)

is the CDF of X , given by Lemma 2, and GX (·, ·, ·) is
the IG-MGF of the sum of L i.i.d. squared η − μ variates
directly obtained from Corollary 1. Thus, the OP in (16) is,
in essence, expressed in terms of the confluent Lauricella
function. Simplified expressions for the CDF of X can be
found in [4] for integer or half-integer values of Lμ. Thus, by
making use of [4, (7)], the first term in (16) is expressed as

G̃X

(
0, 0;

γ0
SNR

)
= 1− YLμ

(
H

h
,

√
2hμγ0

SNR

)
, (17)

where YLμ represents Yacoub’s integral [4]. Eqs. [4, (5)] and
[4, (6)], respectively, provide expressions for YLμ in terms of
the Bessel and Marcum Q functions (Lμ half-integer) or the
Jacobi polynomials (Lμ integer).
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Fig. 1. OP versus average SINR normalized by γ0 for MRC with L
independent antennas and fading parameters η = 0.3, μ = 0.6.

2) Correlated fading: The OP is given by (16), but in this
case X is the sum of L correlated squared η−μ variates and,
consequently, its CDF, G̃X(0, 0; γ0

SNR
), is obtained from (10),

while its IG-MGF, GX (·, ·, ·), is obtained by using (9) and (10)
in Corollary 1. Recall that (9) and (10) hold only for integer
values of 2μ and, therefore, the analysis in the correlated case
is restricted to such values (sufficient to model all the classical
fading distributions).

IV. NUMERICAL RESULTS

This section presents numerical evaluations of the derived
OP expressions validated against Monte-Carlo simulations en-
tailing 10000 realizations per simulated point. The simulation
model corresponds to the one described in Section III.

Figs. 1 and 2 show the OP of an L-antenna MRC receiver
from (16), respectively for the i.i.d. and the correlated cases.
The OP is plotted against the average SINR per antenna
normalized by γ0, i.e.,

γ̄

γ0
[dB] = 10 log10

(
1

γ0 (
∑

1/SIRi + 1/SNR)

)
,

for several values of L and different fading parameters η and
μ. Three interferers are considered with SIR1 = 6 dB and
SIR2 = SIR3 = 9 dB, while SNR = 10 dB. Results in Fig. 1
correspond to i.i.d. fading and parameters η = 0.3, μ = 0.6.
Fig. 2 shows the OP for correlated fading with correlation
coefficients ρ12 = 0.6, ρ13 = 0.4, and ρ23 = 0.2. In this case,
the fading parameters have been set to {η = 2, μ = 0.5},
corresponding to Nakagami-q (Hoyt) with q =

√
2, and to

{η = 1, μ = 1.5}, corresponding to Nakagami-m with m = 3.
In both figures, the analytical results are in perfect agreement
with the Monte-Carlo simulations.

APPENDIX A
PROOF OF LEMMA 1 AND LEMMA 3

The generalized MGF can be expressed as GX (a, b; 0) =
L [xafX (x) ; s]|s=−b with L the Laplace transform. Then,
MX (−s) = L [fX (x) ; s] and the differentiation property of
the Laplace transform lead to

GX (a, b; 0) = (−1)
a da

dsa
[MX (−s)]

∣∣∣∣
s=−b

. (18)
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Fig. 2. OP versus average SINR normalized by γ0 for MRC with L correlated
antennas.

Finally, (5) and (9) are obtained, respectively, by substituting
(3) and (8) into (18), followed by application of the Leibniz
rule and some algebra.

APPENDIX B
PROOF OF LEMMA 2 AND LEMMA 4

The expressions for G̃X(a, b; ζ) in (6) and (10), respectively
for the i.i.d. and correlated cases, are obtained via the follow-
ing rearrangement of the Laplace transform

L
[
G̃X(a, b; t); t, s

]
=

1

s
(−1)a

da

dsa
[L [fX (t) ; s− b]] . (19)

Then, L [fX (t) ; s− b] is replaced by MX (−s+ b), given in
(3) and (8), and after some algebra, the resulting expression is
identified with [10, (3.43.1.4)], yielding (6) and (10) for the
i.i.d. and correlated cases.
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